Skip to main content
Log in

Comparison of Theory and Experiment in Pulsatile Flow in Cat Lung

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model of pulsatile flow in cat lung based on existing morphometric and elastic data is presented and validated by experimental results. In the model, the pulmonary arteries and veins were treated as elastic tubes, whereas the pulmonary capillaries were treated as two-dimensional sheets. The macro- and microcirculatory vasculature was transformed into an analog electrical circuit. Input impedances of the pulmonary blood vessels of every order were calculated under normal physiological conditions. Pressure-flow relation of the whole lung was predicted theoretically. Experiments on isolated perfused cat lungs were carried out. The relation between pulsatile blood pressure and blood flow was measured. Comparison of the theoretically predicted input impedance spectra with those of the experimental results showed that the modulus spectra were well predicted, but significant differences existed in the phase angle spectra between the theoretical predictions and the experimental results. This latter discrepancy cannot be explained at present and needs to be further investigated. © 1998 Biomedical Engineering Society.

PAC98: 8745Hw, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fung, Y. C., and S. S. Sobin. Theory of sheet flow in lung alveoli. J. Appl. Physiol.26:472-488, 1969.

    Google Scholar 

  2. Fung, Y. C. Theoretical pulmonary microvascular impedance. Ann. Biomed. Eng.1:221-245, 1972.

    Google Scholar 

  3. Fung, Y. C. Fluid in the interstitial space of the pulmonary alveolar sheet. Microvasc. Res.7:89-113, 1974.

    Google Scholar 

  4. Fung, Y. C., and R. T. Yen. A new theory of pulmonary blood flow in zone 2 condition. J. Appl. Physiol.60(5):1638- 1650, 1986.

    Google Scholar 

  5. Fung, Y. C., Biomechanics: Circulation, 2nd ed. New York: Springer-Verlag, 1996, pp. 108–205.

    Google Scholar 

  6. Gan, R. Z., Y. Tian, R. T. Yen, and G. Kassab. Morphometry of the dog pulmonary venous tree. J. Appl. Physiol.75:432- 440, 1993.

    Google Scholar 

  7. Gan, R. Z., and R. T. Yen. Vascular impedance analysis in dog lung with detailed morphometric and elasticity data. J. Appl. Physiol.77(2):706-717, 1994.

    Google Scholar 

  8. Grant, B. J. B., and L. J. Paradowski. Characterization of pulmonary arterial input impedance with lumped parameter models. Am. J. Physiol.252:H585-593, 1987.

    Google Scholar 

  9. Horsfield, K. Functional morphology of the pulmonary vasculature. In: Respiratory Physiology, edited by H. K. Chang and M. Paiva. New York: Marcel Dekker, 1989, pp. 499- 531.

    Google Scholar 

  10. Huang, W., R. T. Yen, M. McLaurine, and G. Bledsoe. Morphometry of the human pulmonary vasculature. J. Appl. Physiol.81(5):2123-2133, 1996.

    Google Scholar 

  11. Jiang, Z. L., G. S. Kassab, and Y. C. Fung. Diameter-Defined Strahler system and connectivity matrix of the pulmonary arterial tree. J. Appl. Physiol.76(2):882-892, 1994.

    Google Scholar 

  12. Kassab, G. S., C. A. Rider, N. J. Tang, and Y. C. Fung. Morphometry of pig coronary arterial trees. Am. J. Physiol.265:H350-356, 1993.

    Google Scholar 

  13. Li, J. K-J., J. Melbin, and A. Noordergraaf. Pulse wave propagation. Circ. Res.49:442-452, 1981.

    Google Scholar 

  14. Lilagan, P. E., B. E. Marshall, and A. Noordergraaf. Analysis of deficiencies in models of the pulmonary circulation using the two-port method. Adv. Bioeng. ASME26:507-510, 1993.

    Google Scholar 

  15. Ling, S. C., H. B. Atabek, W. G. Letzing, and D. J. Patel. Nonlinear analysis of aortic flow in living dogs. Circ. Res.33:198-212, 1973.

    Google Scholar 

  16. Lucas, C. L., B. Ha, G. W. Henry, J. L. Ferreiro, and B. R. Wilcox. Toward a minimal lumped parameter model of the pulmonary input impedance spectrum. Adv. Bioeng. ASME26:503-506, 1993.

    Google Scholar 

  17. Milnor, M. R. Hemodynamics, 2nd ed. Baltimore: Williams & Wikins, 1989.

    Google Scholar 

  18. Olman, M. A., R. Z. Gan, R. T. Yen, I. Villespin, R. Maxwell, C. Pedersen, R. Konopka, J. Debes, and K. M. Moser. Effect of chronic thromboembolism on the pulmonary artery pressure-flow relationship in dogs. J. Appl. Physiol.76(2):875-881, 1994.

    Google Scholar 

  19. Sobin, S. S., Y. C. Fung, H. M. Tremer, and T. H. Rosenquist. Elasticity of pulmonary alveolar microvascular sheet in the cat. Circ. Res.30:440-450, 1972.

    Google Scholar 

  20. Sobin, S. S., R. G. Lindal, Y. C. Fung, and H. M. Tremer. Elasticity of the smallest noncapillary pulmonary blood vessels in the cat. Microvasc. Res.15:57-68, 1978.

    Google Scholar 

  21. Sobin, S. S., Y. C. Fung, R. G. Lindal, H. M. Tremer, and L. Clark. Topology of pulmonary arterioles, capillaries, and venules in the cat. Microvasc. Res.19:217-233, 1980.

    Google Scholar 

  22. Tian, Y., and R. T. Yen. Model studies of vascular impedance of cat's lung with detailed anatomical and elasticity data (abstract). Adv. Bioeng. ASME22:447-450, 1992.

    Google Scholar 

  23. Weibel, E. R. Morphometry of the Human Lung. New York: Academic, 1963.

    Google Scholar 

  24. Wiener, F. E., E. Morkin, R. Skalak, and A. P. Fishman. Wave propagation in the pulmonary circulation. Circ. Res.19:834-850, 1966.

    Google Scholar 

  25. Womersley, J. R. Oscillatory flow in arteries: The constrained elastic tube as a model of arterial flow and pulse transmission. Phys. Med. Biol.2:176-187, 1957.

    Google Scholar 

  26. Yen, R. T. Elastic properties of pulmonary blood vessels. In: Respiratory Physiology: An Analytical Approach, edited by H. K. Chang and M. Paiva. New York: Marcel Dekker, 1990, pp. 533–559.

    Google Scholar 

  27. Yen, R. T., and Y. C. Fung. Model experiment on apparent blood viscosity and hematocrit in pulmonary alveoli. J. Appl. Physiol.35:510-517, 1973.

    Google Scholar 

  28. Yen, R. T., Y. C. Fung, and N. Bingham. Elasticity of small pulmonary arteries in the cat. J. Biomech. Eng.102:170-177, 1980.

    Google Scholar 

  29. Yen, R. T., and L. Foppiano. Elasticity of small pulmonary veins in the cat. J. Biomech. Eng.103:38-42, 1981.

    Google Scholar 

  30. Yen, R. T., F. Y. Zhuang, Y. C. Fung, H. H. Ho, H. Tremer, and S. S. Sobin. Morphometry of cat pulmonary venous tree. J. Appl. Physiol.55:236-242, 1983.

    Google Scholar 

  31. Yen, R. T., F. Y. Zhuang, Y. C. Fung, H. H. Ho, H. Tremer, and S. S. Sobin. Morphometry of cat's pulmonary arterial tree. J. Biomech. Eng.106:131-136, 1984.

    Google Scholar 

  32. Yen, R. T., Y. C. Fung, F. Y. Zhuang, and Y. J. Zeng. Comparison of theory and experiments of blood flow in cat's lung. In: Biomechanics in China, Japan, and USA, edited by Y. C. Fung, E. Fukada, and J. J. Wang. Beijing: Science Press, 1984, pp. 240-243.

    Google Scholar 

  33. Zhuang, F. Y., Y. C. Fung, and R. T. Yen. Analysis of blood flow in cat's lung with detailed anatomical and elasticity data. J. Appl. Physiol.55:1341-1348, 1983.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Tian, Y., Gao, J. et al. Comparison of Theory and Experiment in Pulsatile Flow in Cat Lung. Annals of Biomedical Engineering 26, 812–820 (1998). https://doi.org/10.1114/1.107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.107

Navigation