Skip to main content
Log in

Left Ventricular Contractility is Impaired Following Myocardial Infarction in the Pig and Rat: Assessment by the End Systolic Pressure–Volume Relation Using a Single-Beat Estimation Technique and Cine Magnetic Resonance Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The end systolic pressure–volume relation (ESPVR) has been shown to be a relatively load independent measure of left ventricular (LV) contractility. Recently, several single-beat ESPVR computation methods have been developed, enabling the quantification of LV contractility without the need to alter vascular loading conditions on the heart. Using a single-beat ESPVR method, which has been validated previously in humans and assumes that normalized elastance is constant between individuals of a species, we studied the effects of myocardial infarction on LV contractility in two species, the rat and the pig. In our studies, LV pressure was acquired invasively and LV volume determined noninvasively with magnetic resonance imaging, at one week postinfarction in pigs and at 12 weeks postinfarction in rats. Normalized systolic elastance curves in both animal species were not statistically different from that of humans. Also, the slope of the ESPVR \(\left( {E_{es} } \right)\) decreased significantly following infarction in both species, while the volume-axis intercept \(\left( {V_0 } \right)\) was unaffected. These results indicate that a single-beat ESPVR method can be used to measure the inotropic response of the heart to myocardial infarction, and that the basis for this method (i.e., constant normalized elastance) is applicable to a variety of mammalian species. © 2000 Biomedical Engineering Society.

PAC00: 8719Uv, 8761Lh, 8719Hh, 8719Rr, 8719Ff

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Borow, K. M., A. Neumann, and J. Wynne. Sensitivity of end-systolic pressure-dimension and pressure-volume relations to the inotropic state in humans. Circulation 65:988–997, 1982.

    Google Scholar 

  2. Burkhoff, D., S. Sugiura, D. T. Yue, and K. Sagawa. Contractility-dependent curvilinearity of end-systolic pressure-volume relations. Am. J. Physiol. 252:H1218-H1227, 1987.

    Google Scholar 

  3. Dell'Italia, L. J., G. G. Blackwell, F. Urthaler, D. J. Pearce, and G. M. Pohost. A stable model of left ventricular dysfunction in an intact animal assessed with high fidelity pressure and cinemagnetic resonance imaging. Cardiovasc. Res. 27:974–979, 1993.

    Google Scholar 

  4. Fifer, M. A., and E. Braunwald. End-systolic pressurevolume and stress-length relations in the assessment of ventricular function in man. In: Advances in Cardiology, edited by D. H. Spodick. Karger, 1985, pp. 36–55.

  5. Gorcsan, J., A. Denault, W. A. Mandarino, and M. R. Pinsky. Left ventricular pressure-volume relations with transesophageal echocardiographic automated border detection: Comparison with conductance-catheter technique. Am. Heart J. 131:544–552, 1996.

    Google Scholar 

  6. Jerzewski, A., P. M. T. Pattynama, P. Steendijk, B. P. J. Leeuwenburgh, A. de Roos, and J. Baan. Differential response of the right and left ventricle to B-adrenergenic stimulation: An echo planar MR study in intact animals. J. Comput. Assist. Tomogr. 22:569–576, 1998.

    Google Scholar 

  7. Kass, D. A., and W. L. Maughan. From “Emax” to pressure-volume relations: A broader view. Circulation 77:1203–1212, 1988.

    Google Scholar 

  8. Kass, D. A., P. Marino, W. L. Maughan, and K. Sagawa. Determinants of end-systolic pressure-volume relations during acute regional ischemia in situ. Circulation 80:1783–1794, 1989.

    Google Scholar 

  9. Kass, D. A., R. Beyar, E. Lankford, M. Heard, W. L. Maughan, and K. Sagawa. Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation 79:167–178, 1989.

    Google Scholar 

  10. Kim, K. M., D. S. Lee, J. K. Chung, M. C. Lee, and Y. J. Kim. Noninvasive measurement of left ventricular contractility using gated myocardial SPECT and arterial pressure tonometer. IEEE Eng. Med. Biol. Mag. 20:517–519, 1998.

    Google Scholar 

  11. Lorenz, C. H., R. E. Henson, M. Creemers, S. E. Fischer, and S. A. Wickline. Regional ventricular function can be quanti-fied in the rat and mouse with a 1.5T whole-body MR scanner. Proceedings of ISMRM 1997, p. 884.

  12. Lorenz, C. H., E. S. Walker, V. L. Morgan, S. S. Klein, and T. P. Graham. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 1:7–21, 1999.

    Google Scholar 

  13. Lorenz, C. H., R. E. Henson, J. S. Allen, R. M. Setser, S. E. Fischer, and S. A. Wickline. Accurate quantification of myocardial mass in the rat using cine MRI at 1.5T. Proceedings of ISMRM 1998, p. 924.

  14. Nakajima, H., H. O. Nakajima, R. L. Hammond, G. A. Thomas, S. Isoda, H. Lu, L. W. Stephenson, and F. A. Baciewicz. Chronic changes of end systolic pressure-volume relationship after regional myocardial infarction. J. Cardiovasc. Surg. 10:652–664, 1995.

    Google Scholar 

  15. Pfeffer, M. A., and E. Braunwald. Ventricular remodeling after myocardial infarction: Experimental observations and clinical implications. Circulation 81:1161–1172, 1990.

    Google Scholar 

  16. Pfeffer, M. A., J. M. Pfeffer, M. C. Fishbein, P. J. Fletcher, J. Spadaro, R. A. Kloner, and E. Braunwald. Myocardial infarct size and ventricular function in rats. Circ. Res. 44:503–512, 1979.

    Google Scholar 

  17. Sato, T., T. Shishido, H. Miyashita, R. Yoshimura, and K. Sunagawa. Single beat estimation of end-systolic elastance (E es ) in rats. Circulation 86:I-518, 1997.

    Google Scholar 

  18. Sato, T., T. Shishihdo, T. Kawada, H. Miyano, H. Miyashita, M. Inagaki, M. Sugimachi, and K. Sunagawa. ESPVR of in situ rat left ventricle shows contractility-dependent curvilinearity. Am. J. Physiol. 274:H1429-H1434, 1998.

    Google Scholar 

  19. Senzaki, H., C. H. Chen, and D. A. Kass. Single-beat estimation of end-systolic pressure-volume relation in humans: A new method with the potential for noninvasive application. Circulation 94:2497–2506, 1996.

    Google Scholar 

  20. Shishido, T., K. Hayashi, K. Shigemi, T. Sato, and K. Sunagawa. Prediction of end-systolic elastance on the basis of systolic time intervals and bilinearly approximated timevarying elastance. Circulation 86:I-518, 1997.

    Google Scholar 

  21. Sodums, M. T., F. R. Badke, M. R. Starling, W. C. Little, and R. A. O'Rourke. Evaluation of left ventricular contractile performance utilizing end-systolic pressure-volume relationships in conscious dogs. Circ. Res. 54:731–739, 1984.

    Google Scholar 

  22. Suga, H., and K. Sagawa. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35:117–126, 1974.

    Google Scholar 

  23. Suga, H., K. Sagawa, and A. A. Shoukas. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32:314–322, 1973.

    Google Scholar 

  24. Sunagawa, K., W. L. Maughan, and K. Sagawa. Effect of regional ischemia on the left ventricular end-systolic pressure-volume relationship of isolated canine hearts. Circ. Res. 52:170–178, 1983.

    Google Scholar 

  25. Sunagawa, K., W. L. Maughan, G. Friesinger, P. Guzman, M. Chang, and K. Sagawa. Effect of coronary arterial pressure on left ventricular end-systolic pressure-volume relation of isolated canine heart. Circ. Res. 50:727–734, 1982.

    Google Scholar 

  26. Sunagawa, K., A. Yamada, Y. Senda, Y. Kikuchi, M. Nakamura, T. Shibahara, and Y. Nose. Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE Trans. Biomed. Eng. 27:299–305, 1980.

    Google Scholar 

  27. Takeuchi, M., Y. Igarashi, S. Tomimoto, M. Odake, T. Hayashi, T. Tsukamoto, K. Hata, H. Takaoka, and H. Fukuzaki. Single-beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation 83:202–212, 1991.

    Google Scholar 

  28. Vaughn, D. E., and M. A. Pfeffer. Post-myocardial infarction ventricular remodeling: Animal and human studies. Cardiovasc. Drugs Ther. 8:453–460, 1994.

    Google Scholar 

  29. Wannenburg, T., S. P. Schulman, D. Burkhoff. End-systolic pressure-volume and MVO2-pressure-volume area relations of isolated rat hearts. Am. J. Physiol. 262:H1287-H1293, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setser, R., Henson, R.E., Allen, J.S. et al. Left Ventricular Contractility is Impaired Following Myocardial Infarction in the Pig and Rat: Assessment by the End Systolic Pressure–Volume Relation Using a Single-Beat Estimation Technique and Cine Magnetic Resonance Imaging. Annals of Biomedical Engineering 28, 484–494 (2000). https://doi.org/10.1114/1.289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.289

Navigation