Skip to main content
Log in

Hydrodynamic models for diffusion in microporous membranes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The hydrodynamic theory of diffusion is extended to describe osmotic flow of binary solutions in microporous membranes. It is shown that the one-dimensional microscopic rate equations of irreversible thermodynamics are completely consistent with creeping flow hydrodynamic analyses. It is further shown how one may determine the onedimensional coefficients from the results of hydrodynamic analysis and how one may obtain macroscopic descriptions by integrating the microscopic equations over the diffusion path. In this way a complete and self-consistent means is developed for interpreting macroscopic behavior in terms of a molecular model. By way of example, a scheme is presented and implemented for estimation of reflection coefficients, σ, from the hydrodynamic analysis of P. M. Bungay and H. Brenner (Journal of Fluid Mechanics 1973, 60, 81). The resulting σ's are sensitive to the solute radial probability density; for a uniform distribution the present values are larger than those reported recently by other workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. L., and Quinn, J. A.Biophysical Journal 1974,14, 130–150.

    CAS  PubMed  Google Scholar 

  • Anderson, J. L., and Malone, D. M.Biophysical Journal 1974,14, 1957–1982.

    Google Scholar 

  • Bean, C. P. Physics of porous membranes. In G. Eisenman (Ed.),Membranes: A series of advances. New York: Dekker, 1972, Vol. 1, pp. 1–54.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N.Transport phenomena. New York: Wiley, 1960.

    Google Scholar 

  • Bungay, P. M. Personal communication, 1975.

  • Bungay, P. M., and Brenner, H.Journal Fluid Mechanics 1973,60, 81–96.

    Google Scholar 

  • Curry, F. E.Microvascular Research 1974,8, 236–252.

    Article  CAS  PubMed  Google Scholar 

  • Durbin, R. P.Journal of General Physiology 1960,44, 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Gregor, H. P.Journal of the American Chemical Society 1951,73, 642.

    CAS  Google Scholar 

  • Kedem, O., and Katchalsky, A.Biochimica et Biophysica Acta 1958,27, 229–246.

    Article  CAS  PubMed  Google Scholar 

  • Kobatake, Y.Journal of Chemical Physics 1964,40, 2212, 2219.

    CAS  Google Scholar 

  • Lightfoot, E. N.Transport phenomena and living systems. New York: Interscience, 1974.

    Google Scholar 

  • Renkin, E. M.Journal of General Physiology 1954,38, 225–243.

    CAS  PubMed  Google Scholar 

  • Scattergood, E. M., and Lightfoot, E. N.Transactions of the Faraday Society 1968,64, 1135–1146.

    Article  CAS  Google Scholar 

  • Spiegler, K. S.Transactions of the Faraday Society 1958,54, 1409.

    Article  Google Scholar 

  • Staverman, J. A. 1951,Recueil des Travaux Chimiques des Pays-Bas 1951,70, 344–352.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by NIH grant HL 19139 and NSF grant GK 33346x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lightfoot, E.N., Bassingthwaighte, J.B. & Grabowski, E.F. Hydrodynamic models for diffusion in microporous membranes. Ann Biomed Eng 4, 78–90 (1976). https://doi.org/10.1007/BF02363560

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02363560

Keywords

Navigation