Skip to main content
Log in

An Investigation of the Positive Column of a Cd–Ne Glow Discharge. I: Steady State

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

An investigation of cadmium-neon plasma in cylindrical axially homogeneouspositive column of a dc glow discharge at low and intermediate pressure ispresented. Electron impact excitation cross sections, heavy-particlecollision rate coefficients, and radiative decay rates for Cd–Nemixture have been assembled from the literature and summarized. Aself-consistent collisional-radiative model based on numerical solution ofthe electron Boltzmann equation coupled with a system of particle balanceequations for the electrons, excited atoms and ions, as well as the electronenergy balance equation, is developed. By this model, the electron energydistribution function, mean energy, electron density, electron mobility, anddiffusion coefficient, populations of Cd and Ne excited states and theapplied dc electric field are calculated. The populations of the excitedCd(5p3P0,1,2) atoms are measured using opticalabsorption spectroscopy. From these measurements the effective lifetime ofthe resonance state Cd(5p3P1) and the diffusioncoefficients of both metastable states Cd(5p3P0) andCd(5p3P2) are determined. The electron density isderived by probes measurements. The influence of the Cd vapor pressure anddischarge current on the main plasma characteristics is studied. Modelpredictions compare favorably with measured electron density and populationsof excited states in a wide range of discharge conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. S. Willett, Introduction to Gas Lasers: Inversion Mechanisms. Pergamon Press, Oxford (1974).

    Google Scholar 

  2. T. Goto, K. Hane, M. Okuda, and S. Hattori, Phys,. Rev. A 27, 1844–1850 (1983).

    Google Scholar 

  3. J. R. Goode and D. C. Otto, Appl. Spectr. 32, 63–69 (1978).

    Google Scholar 

  4. R. H. Springer and B. T. Barnes, J. Appl. Phys. 39, 3100–3104 (1968).

    Google Scholar 

  5. R. B. Winkler, J. Wilhelm, and R. Winkler, Ann. Phys. 40, 90–118 (1983).

    Google Scholar 

  6. V. M. Milenin and N. Timofeev, Plasma of the Low Pressure Gas Discharge Light Sources. Leningrad University Edition, Leningrad (Russian) (1991).

    Google Scholar 

  7. O. P. Bochkova, A. V. Kuligin, and Yu. A. Tolmachev, Opt. Spectrosc. (USSR) 70, 286–287 (1991).

    Google Scholar 

  8. V. V. Sovter, I. P. Zapesochnyi, and O. B. Shpenik, Opt. Spektrosc. (USSR) 36, 482–486 (1974).

    Google Scholar 

  9. S. V. Gordeev and A. S. Chirtsov, Opt. Spektrosc. (USSR) 57, 408–412 (1984).

    Google Scholar 

  10. N. P. Penkin and T. P. Redko, Opt. Spectrosc. (USSR) 23, 252–253 (1967).

    Google Scholar 

  11. S. Barsotti, F. Fuso, A. F. Molisch, and M. Allegrini, Phys. Rev. A 57, 1778–1786 (1998).

    Google Scholar 

  12. E. J. McGuire, Phys. Rev. A 16, 62–79 (1977).

    Google Scholar 

  13. T. Ta Van, Rev. Phys. Appl. 19, 403–408 (1984).

    Google Scholar 

  14. L. A. Riseberg, W. F. Parks, and L. D. Schearer, Phys. Rev. A 8, 1962–1968 (1973).

    Google Scholar 

  15. J. Supronowicz, M. J. Hinek, J. B. Atkison, and L. Krause, Chem. Phys. Lett. 213, 282–288 (1993).

    Google Scholar 

  16. G. A. Vesnicheva and N. P. Penkin, Opt. Spectrosc. (USSR) 32, 563–564 (1972).

    Google Scholar 

  17. M. Czajkowski, R. Bobkowski, and L. Krause, Spectrochim. Acta 46, 1–7 (1991).

    Google Scholar 

  18. C. Boulmer-Leborgne, B. Dubreuil, B. Oumarou, and J. C. Pellicer, J. Phys. D: Appl. Phys. 21, 390–402 (1988).

    Google Scholar 

  19. E. Vokatý and K. Mašek, Proc. II Conf. Gas Discharges, London, pp. 59–61 (1972).

  20. G. R. Fournier and M. W. McGoech, J. Appl. Phys. 49, 2651–2658 (1978).

    Google Scholar 

  21. R. B. Brode, Phys. Rev. 35, 504–508 (1930).

    Google Scholar 

  22. S. N. Nahar, Phys. Rev. A 43, 2223–2236 (1991).

    Google Scholar 

  23. L. Vriens and A. H. M. Smeets, Phys. Rev. A 22, 940–951 (1980).

    Google Scholar 

  24. H. A. Hyman, Phys. Rev. A 20, 855–859 (1979).

    Google Scholar 

  25. M. A. Mazing, V. I. Rakhovskii, G. I. Stotskii, and V. M. Shustryakov, Opt. Spectrosc. (USSR) 37, 864–865 (1974).

    Google Scholar 

  26. I. I. Sobelman, Introduction to the Theory of Atomic Spectra. Oxford: Pergamon Press.

  27. H. W. Drawin, Z. Phys. 225, 483–493 (1969).

    Google Scholar 

  28. A. Ogoyski, I. Rusinov, and A. Blagoev, 30 EGAS Conf. Abstr. Marseille, France, P2–P9 (1999).

    Google Scholar 

  29. S. C. Braun, Basic Data of Plasma Physics. Cambridge, MA: MIT Press (1967).

    Google Scholar 

  30. P. F. Gruzdev, Transition Probabilities and Radiative Lifetimes of Atoms and Ions. Energoatomizdat Moskow (Russian) (1990).

    Google Scholar 

  31. J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Ions. Nat. Standard Ref. Data System, Washington, DC (1980).

    Google Scholar 

  32. N. P. Penkin and T. P. Redko, Opt. Spectrosc. (USSR) 22, 384–389 (1966).

    Google Scholar 

  33. T. Holstein, Phys. Rev. 83, 1195–1168 (1951).

    Google Scholar 

  34. M. Hayashi, private communication.

  35. L. W. G. Steenhuijsen, Beitr. Plasmaphys. 21, 301–328 (1980).

    Google Scholar 

  36. D. Urlandt and R. Winkler, Plasma Chem. Plasma Process. 16, 517–545 (1996).

    Google Scholar 

  37. N. B. Kolokolov, A. A. Kudryavtsev, and A. B. Blagoev, Phys. Scripta 50, 371–402 (1996).

    Google Scholar 

  38. H. Brunet, B. Lacour, J. Rocca Serra, M. Legentil, S. Mizzi, S. Pasquiers, and V. Puech, J. Appl. Phys. 68, 4474–4480 (1990).

    Google Scholar 

  39. E. W. MacDaniel, Collision Phenomena in Ionized Gases. Wiley, New York (1964).

    Google Scholar 

  40. L. M. Biberman, V. S. Vorob'ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas. Plenum, New York (1987).

    Google Scholar 

  41. R. B. Winkler, J. Wilhelm, and R. Winkler, Ann. Phys. 39, 10–22 (1982).

    Google Scholar 

  42. U. Kortshagen and H. Schlüter, J. Phys. D: Appl. Phys. 25, 644–651 (1992).

    Google Scholar 

  43. P. A. Sa´, J. Loureiro, and C. M. Ferreira, J. Phys. D: Appl. Phys. 25, 960–966 (1992).

    Google Scholar 

  44. D. Loffhagen and R. Winkler, J. Comp. Phys. 112, 91–101 (1994).

    Google Scholar 

  45. A. N. Nesmeyanov, Vapor Pressure of the Elements. Academic Press, New York (1963).

    Google Scholar 

  46. V. N. Rebane, Opt. Spectrosc. (USSR) 26, 371–379 (1969).

    Google Scholar 

  47. S. Brym et al., Phys. Scripta 53, 541–544 (1996).

    Google Scholar 

  48. I. M. Rusinov and A. B. Blagoev, Bulg. J. Phys. 23, 73–78 (1996).

    Google Scholar 

  49. A. Sikorska, Acta Phys. Polon. A65, 189–196 (1984).

    Google Scholar 

  50. H. Schuler and J. E. Keyston, Z. Phys. 67, 433–439 (1931).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrova, T., Ogoyski, A., Petrov, G.M. et al. An Investigation of the Positive Column of a Cd–Ne Glow Discharge. I: Steady State. Plasma Chemistry and Plasma Processing 20, 365–392 (2000). https://doi.org/10.1023/A:1007096312136

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007096312136

Navigation