Skip to main content
Log in

Characterization of Ocular Pharmacokinetics of Beta-Blockers Using a Diffusion Model After Instillation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To characterize the ocular pharmacokinetics of beta-blockers (timolol and tilisolol) after instillation in the albino rabbit using a mathematical model that includes a diffusion process.

Methods. The disposition of fluorescein isothiocyanate-dextran (FITC-dextran, molecular weight 4400), timolol, and tilisolol was determined in tear fluid and aqueous humor after instillation or ocular injection in rabbits. The in vivo penetration parameters were estimated by fitting the concentration-time profiles to the Laplace equations based on a diffusion model using MULTI(FILT) program. Thein vivo permeability of drugs was measured across cornea using a two-chamber diffusion cell.

Results. Concentration-time profiles of drugs in the tear fluid after instillation showed a monoexponential curve. Although a monoexponential curve was observed in the aqueous humor concentration of FITC-dextran after injection into the aqueous chamber, timolol and tilisolol showed a biexponential curve. On the basis of these results, anin vivo pharmacokinetic model was developed for estimation of penetration parameters. The in vitro partition parameters were higher than those of the in vivo parameters.

Conclusions. The ocular absorption of timolol and tilisolol was characterized using an in vivo pharmacokinetic model and in vivo penetration parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. Makoid and J. R. Robinson. Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye. J. Pharm. Sci. 68:435–443 (1979).

    Google Scholar 

  2. R. D. Schoenwald. Ocular drug delivery; pharmacokinetic considerations. Clin. Pharmacokinet. 18:255–269 (1990).

    Google Scholar 

  3. H. Sasaki, Y. Igarashi, K. Nishida, and J. Nakamura. Ocular delivery of the β-blocker, tilisolol, through the prodrug approach. Int. J. Pharm. 93:49–60 (1993).

    Google Scholar 

  4. H. Sasaki, Y. Igarashi, T. Nagano, K. Yamamura, K. Nishida, and J. Nakamura. Penetration of β-blockers through ocular membranes in albino rabbits. J. Pharm. Pharmacol. 47:17–21 (1995).

    Google Scholar 

  5. Y. Yano, K. Yamaoka, and H. Tanaka. A nonlinear least squares program, MULTI(FILT), based on fast inverse Laplace transform for microcomputers. Chem. Pharm. Bull. 37:1035–1038 (1989).

    Google Scholar 

  6. S. S. Chrai, T. F. Patton, A. Mehta, and J. R. Robinson. Lacrimal and instilled fluid dynamics in rabbit eyes. J. Pharm. Sci. 62:1112–1121 (1973).

    Google Scholar 

  7. M. G. Doane, A. D. Jensen, and C. H. Dohlman. Penetration routes of topically applied eye medications. Am. J. Ophthalmol. 85:383–386 (1978).

    Google Scholar 

  8. J. M. Conrad and J. R. Robinson. Aqueous chamber drug distribution volume measurement in rabbits. J. Pharm. Sci. 66:219–224 (1977).

    Google Scholar 

  9. Y. Nakagawa, T. Sugai, W.-P. Chin, T. Shibuya, K. Hashimoto, and S. Imai. Pharmacological profile of a new β-adrenoceptor blocker, 4-[3-(tert-butylamino)-2-hydroxypropoxy-N-methylisocarbostyril hydrochloride (n-696). Arzneim.-Forsch./Drug Res. 34:194–199 (1984).

    Google Scholar 

  10. I. Ahmed, R. D. Gokhale, M. V. Shah, and T. F. Patton. Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. J. Pharm. Sci. 76:583–586 (1987).

    Google Scholar 

  11. S.-C. Chang, H. Bundgaard, A. Buur, and V. H. L. Lee. Improved corneal penetration of timolol by prodrugs as a means to reduce systemic drug load. Invest. Ophthalmol. Vis. Sci. 28:487–491 (1987).

    Google Scholar 

  12. H. Sasaki, K. Yamamura, C. Tei, K. Nishida, and J. Nakamura. Ocular permeability of FITC-dextran with absorption promoter for ocular delivery of peptide drug. J. Drug Target. 3:129–135 (1995).

    Google Scholar 

  13. P. A. Zane, S. D. Brindle, D. O. Gause, A. J. O'Buck, P. R. Raghavan, and S. L. Tripp. Physicochemical factors associated with binding and retention of compounds in ocular melanin of rats; correlations using data from whole-body autoradiography and molecular modeling for multiple linear regression analyses. Pharm. Res. 7:935–941 (1990).

    Google Scholar 

  14. I. Ahmed, M. L. Francoeur, A. G. Thombre, and T. F. Patton. The kinetics of timolol in the rabbit lens; implications for ocular drug delivery. Pharm. Res. 6:772–778 (1989).

    Google Scholar 

  15. H. Miichi and S. Nagataki. Effects of cholinergic drugs and adrenergic drugs on aqueous humor formation in the rabbit eye. Jpn. J. Ophthalmol. 26:425–436 (1982).

    Google Scholar 

  16. M. Araie. Time change of rabbit aqueous flow under influence of adrenergic drugs. Exp. Eye Res. 40:391–403 (1985).

    Google Scholar 

  17. J. C. Keister, E. R. Cooper, P. J. Missel, J. C. Lang, and D. F. Hager. Limits on optimizing ocular drug delivery. J. Pharm. Sci. 80:50–53 (1991).

    Google Scholar 

  18. T. J. Mikkelson, S. S. Chrai, and J. R. Robinson. Altered bioavailability of drugs in the eye due to drug-protein interaction. J. Pharm. Sci. 62:1648–1653 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamura, K., Sasaki, H., Nakashima, M. et al. Characterization of Ocular Pharmacokinetics of Beta-Blockers Using a Diffusion Model After Instillation. Pharm Res 16, 1596–1601 (1999). https://doi.org/10.1023/A:1018964823193

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018964823193

Navigation