Skip to main content
Log in

In Vivo Specific Binding Characteristics and Pharmacokinetics of a 1,4-Dihydropyridine Calcium Channel Antagonist in the Senescent Mouse Brain

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To characterize the in vivo specific binding andpharmacokinetics of a 1,4-dihydropyridine (DHP) calcium channel antagonist, PN200-110, in the senescent brain, using senescence-accelerated pronemice (SAMP8) and senescence-resistant mice (SAMR1).

Methods. Blood, brain, and heart samples were taken periodically fromSAMR1 and SAMP8 following intravenous injection of (+)-[3H]PN200-110, and the concentration of (+)-[3H]PN 200-110 in the plasmaand tissues was determined. In addition, the in vivo specific bindingof (+)-[3H]PN 200-110 in the brains of SAMR1 and SAMP8 wasmeasured periodically after intravenous injection of the radioligand.

Results. There was very little significant difference between SAMR1and SAMP8 in terms of the half-life (t1/2), total body clearance (CLtot),steady-state volume of distribution (Vdss), and AUC for the plasmaconcentration of (+)-[3H]PN 200-110 after intravenous injection ofthe radioligand. The brain concentration (AUCbrain) for (+)-[3H]PN200-110 and the brain/plasma AUC ratio (AUCbrain/AUCplasma) weresignificantly lower in SAMP8 than in SAMR1, and the heartconcentration (AUCheart) and the heart/plasma AUC ratio (AUCheart/AUCplasma)were similar in both strains. Also, the brain/plasma unbound AUCratio (AUCbrain/AUCplasma-free) for (+)-[3H]PN 200-110 wassignificantly lower in SAMP8 than in SAMR1. The in vivo specific binding(AUCspecific binding, maximal number of binding sites: Bmax) of(+)-[3H]PN 200-110 was significantly lower in brain particulate fractionsof SAMP8 than SAMR1.

Conclusions. The concentration and in vivo specific binding of(+)-[3H]PN 200-110 was significantly reduced in the senescent brain. Thesimultaneous analysis of the concentrations of centrally acting drugsand the in vivo specific binding in the brain in relation to theirpharmacokinetics may be valuable in evaluating their CNS effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Takeda, M. Hosokawa, S. Takeshita, M. Irino, K. Higuchi, T. Matsushita, Y. Tomita, K. Yasuhira, H. Hamamoto, K. Shimizu, M. Ishii, and T. Yamamuro. A new murine model of accelerated senescence. Mech. Aging Dev. 17:183–194 (1981).

    Google Scholar 

  2. M. Miyamoto, Y. Kiyota, N. Yamazaki, A. Nagaoka, T. Matsuo, Y. Nagama, and T. Takeda. Age-related changes in learning and memory in the senescence-accelerated mouse (SAM). Physiol. Behav. 38:399–406 (1986).

    Google Scholar 

  3. H. Yagi, S. Katoh, I. Akiguchi, and T. Takeda. Age-related deterioration of ability of acquisition in memory and learning in senescence accelerated mouse: SAM-P/8 as an animal model of disturbances in recent memory. Brain Res. 474:86–93 (1988).

    Google Scholar 

  4. K. Higuchi, A. Matsumura, A. Honma, S. Takeshita, K. Hashimoto, M. Hosokawa, K. Yasuhira, and T. Takeda. Systemic senile amyloid in senescence-accelerated mouse. A unique fibril protein demonstrated in tissues from various organs by unlabeled immunoperoxidase method. Lab. Invest. 48:231–240 (1983).

    Google Scholar 

  5. Y. Kitamura, X.-H. Zhao, T. Ohnuki, and Y. Nomura. Ligand-binding characteristics of [ 3 H]QNB, [ 3 H]prazosin, [ 3 H]rauwolscine, [ 3 H]TCP and [ 3 H]nitrendipine to cerebral cortical and hippocampal membranes of senescence accelerated mouse. Neurosci. Lett. 106:334–338 (1989).

    Google Scholar 

  6. H. Kabuto, T. Yokoi, A. Mori, M. Murakami, and S. Sawada. Neurochemical changes related to ageing in the senescence-accelerated mouse brain and the effect of chronic administration of nimodipine. Mech. Aging Dev. 80:1–9 (1995).

    Google Scholar 

  7. S. Yamada, S. Uchida, T. Ohkura, R. Kimura, M. Yamaguchi, M. Suzuki, and M. Yamamoto. Alterations in calcium antagonist receptors and calcium content in senescent brain and attenuation by nimodipine and nicardipine. J. Pharmacol. Exp. Ther. 277:721–727 (1996).

    Google Scholar 

  8. P. K. Fischhof. Divergent neuroprotective effects of nimodipine in PDD and MID provide indirect evidence of disturbances in Ca 2+ homeostasis in dementia. Mech. Find. Exp. Clin. Pharmacol. 15:549–555 (1993).

    Google Scholar 

  9. J. G. Kelly and O'Malley. Calcium antagonists in the elderly. Drugs Aging 3:400–407 (1993).

    Google Scholar 

  10. H. F. Schran, J. M. Jaffe, and L. M. Gonasum. Clinical pharmacokinetics of isradipine. Am. J. Med. 84(suppl. 3B):80–89 (1988).

    Google Scholar 

  11. F. L. S. Tse, J. M. Jaffe, A. E. Hassell, and H. F. Schran. Bioavailability of isradipine in young and old rats: effect of mode of administration. J. Pharm. Pharmacol. 41:657–660 (1989).

    Google Scholar 

  12. Y. Tokuma, T. Fujiwara, and H. Noguchi. Absorption, distribution and excretion of nilvadipine, a new dihydropyridine calcium antagonist, in rats and dogs. Xenobiotica 17:1341–1349 (1987).

    Google Scholar 

  13. S. Yamada, Y. Matsuoka, Y. Kato, R. Kimura, and O. Inagaki. A sustained occupancy in vivo of cardiovascular calcium antagonist receptors by mepirodipine and its relation to pharmacodynamic effect in spontaneously hypertensive rats. J. Pharmacol. Exp. Ther. 262:589–594 (1992).

    Google Scholar 

  14. S. Uchida, S. Yamada, T. Ohkura, M. Heshikiri, A. Yoshimi, H. Shirahase, and R. Kimura. The receptor occupation and plasma concentration of NKY-722, a water-soluble dihydropyridine-type calcium antagonist, in spontaneously hypertensive rats. Br. J. Pharmacol. 114:217–223 (1995).

    Google Scholar 

  15. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobiodyn. 4:879–885 (1981).

    Google Scholar 

  16. R. Weizman, A. Weizman, K. A. Kook, F. Vocci, S. I. Deutsh, and S. M. Paul. Repeated swim stress alters brain benzodizepine receptors measured in vivo. J. Pharmacol. Exp. Ther.bd249:701–707 (1989).

    Google Scholar 

  17. T. M. Jay, G. Lucignani, A. M. Crane, J. Jehle, and L. Sokoloff. Measurement of local cerebral blood flow with [ 14 C]iodoantipyrine in the mouse. J. Cereb. Blood Flow Metab. 8:121–129 (1988).

    Google Scholar 

  18. M. Gibaldi and D. Perrier. Pharmacokinetics (2nd Ed.), Marcel Dekker Inc., New York, Basel, 1982.

    Google Scholar 

  19. M. A. Gonzales, T. N. Tozer, and D. T. T. Chang. Nonlinear tissue disposition: salicylic acid in rat brain. J. Pharm. Sci. 64:99–103 (1975).

    Google Scholar 

  20. M. A. Hedeya and R. J. Sawchuk. Effect of probenecid on the renal and nonrenal clearances of zidovudine and its distribution into cerebrospinal fluid in the rabbit. J. Pharm Sci. 78:716–722 (1989).

    Google Scholar 

  21. D. S. Heffez, T. S. Nowak, and J. V. Passoneau. Nimodipine levels in gerbil brain following parenteral drug administration. J. Neurosurg. 63:589–592 (1985).

    Google Scholar 

  22. S. Uchida, S. Yamada, K Nagai, Y. Deguchi, and R. Kimura. Brain pharmacokinetics and in vivo receptor binding of 1,4-dihydropyrine calcium channel antagonists. Life Sci. 61:2083–2090 1997).

    Google Scholar 

  23. M. Ueno, I. Akiguchi, H. Yagi, M. Takemura, T. Kitabayashi, J. Kimura, M. Hosokawa, and T. Takeda. In T. Takeda (eds.), Age-related changes in blood-brain barrier of the SAM brain. The SAM Model of Senescence, Elsevier Science B. V., 1994, pp. 327–330.

    Google Scholar 

  24. M. M. Cornwell, I. Pastan, and M. M. Gottesman. Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J. Biol. Chem. 262:2166–2170 (1987).

    Google Scholar 

  25. I. Tamai and A. R. Safa. Azidopine noncompetitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistance cells. J. Biol. Chem. 266:16796–16800 (1991).

    Google Scholar 

  26. A. Tsuji, T. Terasaki, Y. Takabataka, Y. Tenda, I. Tamai, T. Yamashima, S. Moritani, T. Tsuruo, and J. Yamashita. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci. 51:1427–1437 (1992).

    Google Scholar 

  27. S. Gupta. P-glycoprotein expression and regulation: age-related changes and potential effects on drug therapy. Drugs Aging. 7:19–29 (1995).

    Google Scholar 

  28. M. D. Hollenberg. Examples of homospecific and heterospecific receptor regulation. Trends Pharmacol. Sci. 6:242–245 (1985).

    Google Scholar 

  29. J. Cahn and M. G. Borzweix. Water, electrolytes contents of the brain and cerebral function in aged rats. Monogr. Neural Sci. 11:85–92 (1984).

    Google Scholar 

  30. M. A. Piggott, J. M. Candy, and R. H. Perry. [ 3 H]Nitrendipine binding in temporal cortex in Alzheimer's and Huntington's diseases. Brain Res. 565:42–47 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchida, S., Yamada, S., Deguchi, Y. et al. In Vivo Specific Binding Characteristics and Pharmacokinetics of a 1,4-Dihydropyridine Calcium Channel Antagonist in the Senescent Mouse Brain. Pharm Res 17, 844–850 (2000). https://doi.org/10.1023/A:1007512426420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007512426420

Navigation