Skip to main content
Log in

In Vitro Measurement of Gastrointestinal Tissue Permeability Using a New Diffusion Cell

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

A new diffusion cell, derived from the Ussing chamber, was developed for the measurement of tissue permeability. This cell incorporates the attributes of using a single material and laminar flow across the tissue surface. In addition, the design allows the cell to be manufactured in a wide range of sizes to allow optimization of surface area to volume for a variety of tissues. The apparatus is applicable to the evaluation of transport of compounds through mucosal/epithelial barriers, i.e., gastrointestinal tissue. Active transport, permeability enhancers, enzymatic degradation, and absorption in various tissue sections can be explored. Preliminary data are consistent with the expected effects of molecular size and partition coefficient of a transported molecule on permeability in epithelial tissue. In addition, active transport of D-glucose and inhibition by phloridzin and ouabain can be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. H. Ussing and K. Zerahn. Acta Physiol. Scand. 23:110–127 (1951).

    Google Scholar 

  2. G. S. Schultz and R. Zalusky. J. Gen. Physiol. 49:567–584 (1964).

    Google Scholar 

  3. W. S. Marshall and S. D. Klyce. J. Membr. Biol. 54:302–312 (1972).

    Google Scholar 

  4. T. E. Machen, D. Erlij, and F. B. P. Wooding. J. Cell Biol. 54:302–312 (1972).

    Google Scholar 

  5. M. J. Jackson. In L. R. Johnson (ed.), Physiology of the Gastrointestinal Tract, Vol. 2, Raven Press, New York, 1987, pp. 1597–1621.

    Google Scholar 

  6. M. Heyman, R. Ducrol, J. F. Desjeux, and J. L. Morgat. Am J. Physiol. 242:G558–G564 (1982).

    Google Scholar 

  7. M. Heyman, A. M. Dumontrier, and J. F. Desjeux. Am. J. Physiol. 238:G326–G331 (1980).

    Google Scholar 

  8. D. J. Keljo and J. R. Hamilton. Am. J. Physiol. 244:G637–G644 (1983).

    Google Scholar 

  9. G. Barnett, T. Lockwood, A. Arancbia, and L. Z. Benet. J. Pharm. Sci. 67:224 (1978).

    Google Scholar 

  10. J. S. Fordtran, F. C. Rector, M. F. Ewton, N. Sorter, and J. Kinney. J. Clin. Invest. 44:1935–1944 (1965).

    Google Scholar 

  11. M. Field, D. Fromm, and I. McColl. Am. J. Physiol. 220:1388–1396 (1971).

    Google Scholar 

  12. C. L. Corbett, P. E. T. Isaacs. A. K. Riley, and L. A. Turnberg. Gut 18:136–140 (1977).

    Google Scholar 

  13. B. Z. Ginzburg and J. Hogg. J. Theor. Biol. 14:316–322 (1967).

    Google Scholar 

  14. W. S. Rehm. In F. Brommer and A. Kleinzeller (eds.), Current Topics in Membranes and Transport, Vol. 7, Academic Press, New York, pp. 217–27017; P. K. Crane. In C. F. Code (ed.), Handbook of Physiology, Vol. III/6. Alimentary Canal, American Physiological Society, Washington, D.C., 1968, pp. 1323–1358.

    Google Scholar 

  15. K. Takaori, J. Burton, and M. Dinowitz. Biochem. Biophys Res Comm. 137(2):682 (1986).

    Google Scholar 

  16. D. F. Diedrich. Arch. Biochem. Biophys. 117:248–256 (1966).

    Google Scholar 

  17. S. G. Schultz and R. Zalusky. J. Gen. Physiol. 47:1043–1059 (1964).

    Google Scholar 

  18. W. F. Caspary and R. K. Crane. Biochim. Biophys. Acta 211:244 (1968).

    Google Scholar 

  19. R. K. Crane. Physiol. Rev. 40:789 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grass, G.M., Sweetana, S.A. In Vitro Measurement of Gastrointestinal Tissue Permeability Using a New Diffusion Cell. Pharm Res 5, 372–376 (1988). https://doi.org/10.1023/A:1015911712079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015911712079

Navigation