Skip to main content
Log in

Expression Patterns of Cellular Growth-Controlling Genes in Non-Medullary Thyroid Cancer: Basic Aspects

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Robbins J. Thyroid cancer, a lethal endocrine neoplasm. Ann Intern Med 1991;115:133-147.

    Google Scholar 

  2. Fraker DL, Skarulis M, LiVolsi V. Thyroid tumors. In Cancer, Principles and Practice of Oncology. (1997), In DeVita VT Jr., Hellman S, Rosenberg SA (eds), 5th Ed. 1629-1652, Lippincott-Raven Publ, Philadephia. PA.

    Google Scholar 

  3. Heshmati HM, Gharib H, van Heerden JA, Sizemore GW. Advances and controversies in the diagnosis and management of medullary thyroid carcinoma. Am J Med 1997;103:60-69.

    Google Scholar 

  4. Eng C, Mulligan LM. Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumours, and Hirschsprung disease. Hum Mutat 1997;9:97-109.

    Google Scholar 

  5. Clark OH, Duh Q-Y. Thyroid cancer. Med Clin North Am 1991;75:211-234.

    Google Scholar 

  6. Sweeney PJ, Haraf DJ, Recant W, Kaplan EL, Vokes EE. Anaplastic carcinoma of the thyroid. Ann Oncol 1996;7:739-744.

    Google Scholar 

  7. Schlumberger MJ, Papillary and follicular thyroid carcinoma. N Engl J Med 1998;338:297-306.

    Google Scholar 

  8. Burman KD, Ringel MD, Wartofsky L. Unusual types of thyroid neoplasms. Endocrinol Metab Clin North Am 1996;25:49-68.

    Google Scholar 

  9. Brierly JD, Panzarelli T, Carruthers JS, Tsang RW, Gospodarowicz MK, O'sullivan B. A comparison of different staging systems predictability of patient outcome thyroid carcinoma as an example. Cancer 1997;79:14-237.

    Google Scholar 

  10. Cairns J. The origin of human cancers. Nature 1981;289:353-357.

    Google Scholar 

  11. Fearon ER. Human cancer syndromes clues to the origin and nature of cancer. Science 1997;278:1043-1048.

    Google Scholar 

  12. Bishop JM. Molecular themes in oncogenesis. Cell 1991;64:235-237.

    Google Scholar 

  13. Fearon ER, Vogelstein B. A genetic model for colorectal carcinogenesis. Cell 1990;61:759-761.

    Google Scholar 

  14. Hunter T. Cooperation between oncogenes. Cell 1991;64:249-252.

    Google Scholar 

  15. Vassart G, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 1992;13:596-611.

    Google Scholar 

  16. Paschke R, Ludgate M. The thyrotropin receptor in thyroid diseases. N Engl J Med 1997;337:1675-1681.

    Google Scholar 

  17. Spambalg D, Sharifi N, Elisi R, Gross JL, Medeiros-Neto G, Fagin JA. Structural studies of the thyrotropin receptor and Gs alpha in human thyroid cancers: low prevalance of mutations predicts infrequent involvement in malignant transformation. J Clin Endocrinol Metab 1996;81:3898-3901.

    Google Scholar 

  18. BronnegaÊrd M, Torring O, Boos J, Sylven C, Markus C, Wallin G. Expression of thyrotropin receptor and thyroid hormone receptor messenger ribonucleic acid in normal, hyperplastic, and neoplastic human thyroid tissue. J Clin Endocrinol Metab 1994;79:384-389.

    Google Scholar 

  19. Baloch Z, Livolsi VA. Detection of an activating mutation of the thyrotropin receptor in a case of an autonomously hyperfunctioning thyroid insular carcinoma. J Clin Endocrinol Metab 1997;82:3906-3908.

    Google Scholar 

  20. Russo D, Wong MG, Constante G, Chiefari E, Treseler PA, Arturi F, Filetti S, Clark OH. A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis. Thyroid 1999;9:13-17.

    Google Scholar 

  21. Derwahl M, Broeker M, Kraiem Z. Thyrotropin may not be the dominant growth factor in benign and malignant thyroid tumors Clinical Review 101. J Clin Endocrinol Metab 1999;84:829-834.

    Google Scholar 

  22. Esapa C, Foster S, Johnson S, Jameson JL, Kendall-Taylor P, Harris PE. G protein and thyrotropin receptor mutations in thyroid neoplasia. J Clin Endocrinol Metab 1997;82:493-496.

    Google Scholar 

  23. Cai W-I, Lukes Y, Burch HB, Djuh Y-Y, Carr F, Wartofsky L, Rhooms P, D'Avis J, Baker JR Jr., Burman KD. Analysis of human TSH receptor gene and RNA transcripts in patients with thyroid disorders. Autoimmunity 1992;13:43-50.

    Google Scholar 

  24. Gustavsson B, Hermansson A, Andersson AC, Grimelius L, Bergh J, Westermark B, Heldin NE. Decreased growth rate and tumour formation of human anaplastic thyroid carcinoma cells transfected with a human thyrotropin receptor cDNA in NMRI nude mice treated with propylthiouracil. Mol Cell Endocrinol 1996;121:143-151.

    Google Scholar 

  25. Spiegel AM. Mutations in G proteins and G protein-coupled receptors in endocrine disease. J Clin Endocrinol Metab 1996;81:2434-2442.

    Google Scholar 

  26. Suarez HG, du Villard JA, Caillou B, Schlumberger M, Parmentier C, Monier R. Gsp mutations in human thyroid tumours. Oncogene 1991;6:677-679.

    Google Scholar 

  27. Matsuo K, Friedman E, Gejman PV, Fagin JA. The thyrotropin receptor (TSH-R) is not an oncogene for thyroid tumors structural studies of the TSH-R and the a-subunit of GS in human thyroid neoplasms. J Clin Endocrinol Metab 1993;76:1446-1451.

    Google Scholar 

  28. Hamacher C, Studer H, Zbaeren J, Schatz H, Derwahl M. Expression of functional stimulatory guanine nucleotide binding protein in nonfunctioning thyroid adenomas is not correlated to adenylate cyclase activity and growth of these tumors. J Clin Endocrinol Metab 1995;80:1724-1732.

    Google Scholar 

  29. Ringel MD, Saji M, Schwindinger WF, Segev D, Zeiger MA, Levine MA. Absence of activating mutations of the genes encoding the a-subunits of G11 and Gq in thyroid neoplasia. J Clin Endocrinol Metab 1998;83:554-559.

    Google Scholar 

  30. Feuillan PP. McCune-Albright syndrome. Curr Ther Endocrinol Metab 1997;6:235-239.

    Google Scholar 

  31. Mastorakos G, Mitsiades NS, Doufas AG, Koutras DA. Hyperthyroidism in McCune-Albright syndrome with a review of thyroid abnormalities sixty years after the first report. Thyroid 1997;7:433-439.

    Google Scholar 

  32. Collins MT, Shenker A, Monroe J, Krakoff JA, Merino MJ, Sarlis NJ. Clear cell thyroid carcinoma in a patient with Mccune-Albright syndrome clinical description and analysis of tumor features. 1999; Proc 81st Ann Mtg Endo Soc, Abstr. P2-727, San Diego, CA.

  33. Hoelting T, Tezelman S, Siperstein AE, Duh Q-Y, Clark OH. Thyrotropin stimulates invasion and growth of follicular thyroid cancer cells via PKC-rather than PKA-activation. Biochem Biophys Res Commun 1993;195:1230-1236.

    Google Scholar 

  34. Kobayashi K, Shaver J, Liang W, Siperstein AE, Duh Q-Y, Clark OH. Increased phospholipase C activity in neoplastic thyroid membrane. Thyroid 1993;3:25-29.

    Google Scholar 

  35. Laugwitz K-L, Allgeier A, Offermanns S, Spicher K, Van Sande J, Dumont JE, Schultz G. The human thyrotropin receptor a heptahelical receptor capable of stimulating members of all four G protein families. Proc Natl Acad Sci USA 1995;93:116-120.

    Google Scholar 

  36. Farid NR, Shi Y, Zou M. Molecular basis of thyroid cancer. Endocrin Rev 1994;15:202-213.

    Google Scholar 

  37. Bachrach LK, Nanto-Salonen K, Tapanainen P, Rosenfeld RG, Gargosky SE. Insulin-like growth factor binding protein production in human follicular thyroid carcinoma cells. Growth Regul 1995;5:109-118.

    Google Scholar 

  38. Farid NR, Zou M, Shi Y. Genetics of follicular thyroid cancer. Endocrinol Metab Clin North Am 1995;24:865-883.

    Google Scholar 

  39. Fagin JA. Molecular genetics of human thyroid neoplasms. Annu Rev Med 1994;45:45-52.

    Google Scholar 

  40. Aust G, Scherbaum WA. Expression of cytokines in the thyroid thyrocytes as potential cytokine producers. Exp Clin Endocrinol Diabetes 1996;104 (Suppl 4):64-67.

    Google Scholar 

  41. Duh Q-Y, Gum ET, Gerend PL, Raper SE, Clark OH. Epidermal growth factor receptors in normal and neoplastic thyroid tissue. Surgery 1985;98:1000-1007.

    Google Scholar 

  42. Tanaka K, Nagayama Y, Nakano T, Takamura N, Namba H, Fukada S, Kuma K, Yamashita S, Niwa M. Expression profile of receptor-type protein tyrosine kinase genes in the human thyroid. Endocrinology 1998;139:852-858.

    Google Scholar 

  43. Fagin JA. Molecular defects in thyroid gland neoplasia. J Clin Endocrinol Metab 1992;75:1398-1400.

    Google Scholar 

  44. Krontiris TG. Oncogenes N Engl J Med 1995;333:303-306.

    Google Scholar 

  45. Knauf JA, Elisei R, Mochly-Rosen D, Liron T, Chen XN, Gonsky R, Korenberg JR, Fagin JA. Involvement of protein kinase C epsilon (PKCepsilon) in thyroid cell death. A truncated chimeric PKCepsilon cloned from a thyroid cancer cell line protects thyroid cells from apoptosis. J Biol Chem 1999;274:23414-23425.

    Google Scholar 

  46. Denereaz N, Lemarchand-Beraud T. Severe but not mild alterations in thyroid function modulate the density of the TSH receptors on rat thyroid glands. Endocrinology 1995;136:1694-698.

    Google Scholar 

  47. Hoelting T, Siperstein AE, Duh Q-Y, Clark OH. Tamoxifen inhibits growth, migration, and invasion of human follicular and papillary thyroid cancer cells in vitro and in vivo. J Clin Endocrinol Metab 1995;80:308-313.

    Google Scholar 

  48. Inoue H, Oshimo K, Miki H, Kawano M, Monden Y. Immunohistochemical study of estrogen receptors and the responsiveness to estrogen in papillary thyroid carcinoma. Cancer 1993;72:1364-1370.

    Google Scholar 

  49. Barbacid M. Ras genes. Annu Rev Biochem 1987;56:779-791.

    Google Scholar 

  50. Suarez HG, du Villard JA, Severino M, Caillou B, Schlumberger M, Tubiana M, Parmentier C, Monier R. Presence of mutations of all three ras genes in human thyroid tumors. Oncogene 1990;5:565-570.

    Google Scholar 

  51. Karga H, Lee J-K, Vickery AL, Thor A, Gaz RD, Jameson JL. Ras oncogene mutations in benign and malignant thyroid tumors. J Clin Endocrinol Metab 1991;73:832-836.

    Google Scholar 

  52. Shi YF, Zou MJ, Schmidt H, Juhasz F, Stensky V, Robb D, Farid NR. High rates of codon 61 mutations in thyroid tumors in an iodine-deficient area. Cancer Res 1991;51:2690-2696.

    Google Scholar 

  53. Francis-Lang H, Zannini M, DeFelice M, Berlinghieri MT, Fusco A, DiLauro R. Multiple mechanisms of interference between transformation and differentiation in thyroid cells. Mol Cell Biol 1992;12:5793-5800.

    Google Scholar 

  54. Finney RE, Bishop JM. Predisposition to neoplastic transformation caused by gene replacement of H-ras 1. Science 1994;260:1524-1526.

    Google Scholar 

  55. Fogelfeld L, Merchant PS, Zitman R, Grimes SR, Schneider AB. Prevalence of K-ras point mutations in radiation-induced thyroid cancer. Thyroid 1993;3 (Suppl 1):T34.

    Google Scholar 

  56. Lemoine NR, Mayall ES, Wyllie FS, Farr CJ, Hughes D, Padua RA, Thurston V, Williams ED, Wynford-Thomas D. Activated ras oncogenes in human thyroid cancers. Cancer Res 1988;48:4459-4463.

    Google Scholar 

  57. Newman CMH, Magee AI. Post-translational processing of the ras superfamily of small GTP-binding proteins. Biochem Biophys Acta 1993;155:76-96.

    Google Scholar 

  58. Jhiang SM, Mazzaferri EL. The RET/PTC oncogene in papillary thyroid carcinoma. J Lab Clin Med 1994;123:331-337.

    Google Scholar 

  59. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M. et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature 1996;381:789-793.

    Google Scholar 

  60. Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, Pierotti MA, Della Porta G, Vecchio G. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 1987;328:170-172.

    Google Scholar 

  61. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, Pierotti MA, Della Porta G, Fusco A, Vecchio G. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990;60:557-563.

    Google Scholar 

  62. Santoro M, Dathan NA, Berlinghieri MT, Bongarzone I, Paulin C, Grieco M, Pierotti MA, Vecchio G, Fusco A. Molecular characterization of RET/PTC3, a novel rearranged version of the RET proto-oncogene in a human papillary carcinoma. Oncogene 1994;9:509-516.

    Google Scholar 

  63. Komminoth P. The RET proto-oncogene in medullary and papillary thyroid carcinoma. Molecular features, pathophysiology and clinical implications. Virchows Arch 1997;431:1-9.

    Google Scholar 

  64. Sugg SL, Zheng L, Rosen IB, Freeman JL, Ezzat S, Asa SL. Ret/ PTC-1,-2, and-3 oncogene rearrangements in human thyroid carcinomas: implications for metastatic potential? J Clin Endocrinol Metab 1996;81:3360-3365.

    Google Scholar 

  65. Zou MJ, Shi YF, Farid NR. Low rate of ret proto-oncogene activation (PTC/RET) in papillary thyroid carcinomas from Saudi Arabia. Cancer 1994;73:176-180.

    Google Scholar 

  66. Fugazzola L, Pilotti S, Pinchera A, Vorontsova TV, Mondellini P, Bongarzone I, Greco A, Astakhova L, Butti MG, Demidchik EP, et al. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res 1995;55:5617-5620.

    Google Scholar 

  67. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 1997;57:1690-1694.

    Google Scholar 

  68. Viglietto G, Chiapetta G, Martinez-Tello FJ, Fukunaga FH, Tallini G, Rigopoulou D, Visconti R, Mastro A, Santoro M, Fusco A. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 1995;11:1207-1210.

    Google Scholar 

  69. Santoro M, Chiappetta G, Cerrato A, Salvatore D, Zhang L, Manzo G, Picone A, Portella G, Santelli G, Vecchio G, Fusco A. Development of thyroid papillary carcinomas secondary to tissuespeci fic expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 1996;12:1821-1826.

    Google Scholar 

  70. Jhiang SM, Cho JY, Furminger TL, Sagartz JE, Tong Q, Capen CC, Mazzaferri EL. Thyroid carcinomas in RET/PTC transgenic mice. Recent Results Cancer Res 1998;154:265-270.

    Google Scholar 

  71. Wynford-Thomas D. Origin and progression of thyroid epithelial tumours cellular and molecular mechanisms. Horm Res 1997;47:145-157.

    Google Scholar 

  72. Butti MG, Bongarzone I, Ferraresi G, Mondellini P, Borrello MG, Pierotti MA. A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinoma. Genomics 1995;28:15-20.

    Google Scholar 

  73. Meakin SO, Suter U, Drinkwater CC, Welcher AA, Shooter EM. The rat trk protooncogene product exhibits properties characteristic of the slow nerve growth factor receptor. Proc Natl Acad Sci USA 1992;89:2374-2378.

    Google Scholar 

  74. Bongarzone I, Fugazzola L, Vigneri P, Mariani L, Mondellini P, Pacini F, Basolo F, Pinchera A, Pilotti S, Pierotti MA. Age-related activation of the tyrosine kinase receptor proto-oncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metab 1996;81:2006-2013.

    Google Scholar 

  75. Santoro M, Melillo RM, Grieco M, Berlingieri MT, Vecchio G, Fusco A. The TRK and RET tyrosine kinase oncogenes cooperate with ras in the neoplastic transformation of a rat thyroid epithelial cell line. Cell Growth Differ 1993;4:77-84.

    Google Scholar 

  76. Borrello MG, Pelicci G, Arighi E, De Filippis L, Greco A, Bongarzone I, Rizzetti MG, Pelicci PG, Pierotti MA. The oncogenic versions of the Ret and Trk tyrosine kinases bind Shc and Grb2 adaptor proteins. Oncogene 1994;9:1661-1668.

    Google Scholar 

  77. Sugg SL, Ezzat S, Rosen IB, Freeman JL, Asa SL. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab 1998;83:4116-4122.

    Google Scholar 

  78. Di Renzo MF, Olivero M, Ferro S, Prat M, Bongarzone I, Pilotti S, Belfiore A, Costantino A, Vigneri R, Pierotti MA, et al. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene 1992;7:2549-2554.

    Google Scholar 

  79. Belfiore A, Gangemi P, Costantino A, Russo G, Santonocito GM, Ippolito O, Di Renzo MF, Comoglio P, Fiumara A, Vigneri R. Negative/low expression of the Met/hepatocyte growth factor receptor identifies papillary thyroid carcinomas with high risk of distant metastases. J Clin Endocrinol Metab 1997;82:2322-2328.

    Google Scholar 

  80. Terrier P, Sheng ZM, Schlumberger M, Tubiana M, Caillou B, Travagli JP, Fragu P, Parmentier C, Riou G. Structure and expression of c-myc and c-fos proto-oncogenes in thyroid carcinomas. Br J Cancer 1988;57:43-47.

    Google Scholar 

  81. Farid NR. Molecular pathogenesis of thyroid cancer the significance of oncogenes, tumor suppressor genes, and genomic instability. Exp Clin Endocrinol Diabetes 1996;104 (Suppl 4):1-12.

    Google Scholar 

  82. Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL, Hsu RY, Birkett NC, Okino KH, Murdock DC, et al. Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990;63:213-224.

    Google Scholar 

  83. Tanaka T, Umeki K, Yamamoto I, Kotani T, Sakamoto F, Noguchi S, Ohtaki S. C-kit proto-oncogene is more likely to lose expression in differentiated carcinoma than three specific genes, thyroid peroxidase, thyroglobulin and thyroid stimulating hormone receptor. Endocr J 1995;42:723-729.

    Google Scholar 

  84. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994;266:1821-1828.

    Google Scholar 

  85. Hunter T, Pines J. Cyclins and cancer II cyclin D and CDK inhibitors come of age. Cell 1994;79:573-582.

    Google Scholar 

  86. Norbury C, Nurse P. Animal cell cycles and their control. Annu Rev Biochem 1992;61:441-470.

    Google Scholar 

  87. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 1983;33:389-396.

    Google Scholar 

  88. Hunter T, Pines J. Cyclins and cancer. Cell 1991;66:1071-1074.

    Google Scholar 

  89. Zou M, Shi Y, Farid NR, Al-Sedairy ST. Inverse association between cyclin D1 overexpression and retinoblastoma gene mutation in thyroid carcinomas. Endocrine 1998;8:61-64.

    Google Scholar 

  90. Tsihlias J, Kapusta L, Slingerland J. The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu Rev Med 1999;50:401-423.

    Google Scholar 

  91. Ball KL. P21, structure and functions associated with cyclin-CDK binding. Prog Cell Cycle Res 1997;3:125-134.

    Google Scholar 

  92. Carnero A, Hannon GJ. The INK4 family of CDK inhibitors. Curr Top Microbiol Immunol 1998;227:43-55.

    Google Scholar 

  93. Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW. P27/kip1 a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 1999;154:313-323.

    Google Scholar 

  94. Shi Y, Zou M, Farid NR, Al-Sedairy ST. Evidence of gene deletion of p21 (WAF1/CIP1), a cyclin-dependent protein kinase inhibitor, in thyroid carcinomas. Br J Cancer 1996;74:1336-1341.

    Google Scholar 

  95. Tung WS, Shevlin DW, Bartsch D, Norton JA, Wells SA Jr., Goodfellow PJ. Infrequent CDKN2 mutation in human differentiated thyroid cancers. Mol Carcinog 1996;15:5-10.

    Google Scholar 

  96. Muro-Cacho CA, Munoz-Antonia T, Livingston S, Klotch D. Transforming growth factor beta receptors and p27/kip in thyroid carcinoma. Arch Otolaryngol Head Neck Surg 1999;125:76-81.

    Google Scholar 

  97. Evan G, Littlewood T. A matter of life and cell death. Review Science 1998;281:1317-1322.

    Google Scholar 

  98. Suda T, Nagata S. Purification and characterization of the Fasligand that induces apoptosis. J Exp Med 1994;179:873-879.

    Google Scholar 

  99. Nagata S, Golstein P. The Fas death factor. Science 1995;267:1449.

    Google Scholar 

  100. Matiba B, Mariani SM, Krammer PH. The CD95 system and the death of a lymphocyte. Semin Immunol 1997;9:59-68.

    Google Scholar 

  101. Tanimoto C, Hirakawa S, Kawasaki H, Hayakawa N, Ota Z. Apoptosis in thyroid diseases a histochemical study. Endocrine J 1995;42:193-201.

    Google Scholar 

  102. Giordano C, Stassi G, De Maria R, Todaro M, Richiusa P, Papoff G, Ruberti G, Bagnasco M, Testi R, Galluzzo A. Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science 1997;275:960-963. [Comments in Science 1997;275:926, and Science 1998;279:2015.]

    Google Scholar 

  103. Kawakami A, Eguchi K, Matsuoka N, Tsuboi M, Kawabe Y, Ishikawa N, Ito K, Nagataki S. Thyroid-stimulating hormone inhibits Fas antigen-mediated apoptosis of human thyrocytes in vitro. Endocrinology 1996;137:3163-3169.

    Google Scholar 

  104. Mitsiades N, Poulaki V, Mastorakos G, Tseleni-Balafouta ST, Kotoula V, Koutras DA, Tsokos M. Fas ligand expression in thyroid carcinomas a potential mechanism of immune evasion. J Clin Endocrinol Metab 1999;84:2924-2932.

    Google Scholar 

  105. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988;335:440-442.

    Google Scholar 

  106. Adams JM, Cory S. The Bcl-2 protein family, arbiters of cell survival. Science 1998;281:1322-1326.

    Google Scholar 

  107. Branet F, Brousset P, Krajewski S, Schlaifer D, Selves J, Reed JC, Caron P. Expression of the cell death-inducing gene bax in carcinomas developed from the follicular cells of the thyroid gland. J Clin Endocrinol Metab 1996;81:2726-2730.

    Google Scholar 

  108. Pollina L, Pacini F, Fontanini G, Vignati S, Bevilacqua G, Basolo F. Bcl-2, p53 and proliferating cell nuclear antigen expression is related to the degree of differentiation in thyroid carcinomas. Br J Cancer 1996;73:139-143.

    Google Scholar 

  109. Bröcker M, de Buhr I, Papageorgiou G, Schatz H, Derwahl M. Expression of apoptosis-related proteins in thyroid tumors and thyroid carcinoma cell lines. Exp Clin Endocrinol Diabetes 1996;104 (Suppl 4):20-23.

    Google Scholar 

  110. Fearon ER. Tumor suppressor genes. In. Vogelstein B, Kinzler KW (eds). The Genetic Basis of Human Cancer. New York, NY: McGraw-Hill, 1998;229-236.

    Google Scholar 

  111. Knudson AG Jr. Mutation and cancer. Statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:820-825.

    Google Scholar 

  112. Finlay CA, Hinds PW, Levine AJ. The p53 protooncogene can act as a suppressor of transformation. Cell 1989;57:1083-1089.

    Google Scholar 

  113. Vogelstein B, Kinzler KW. P53 function and dysfunction. Cell 1992;70:523-526.

    Google Scholar 

  114. Yoshimoto K, Iwahana H, Fukuda A, Sano T, Saito S, Itakura M. Role of p53 mutations in endocrine tumorigenesis mutation detection by polymerase chain reaction-single strand conformational polymorphism. Cancer Res 1992;52:5061-5068.

    Google Scholar 

  115. Cross SM, Sanchez CA, Morgan CA, et al. A p53-dependent mouse spindle check-point. Science 1995;267:1353-1357.

    Google Scholar 

  116. Hollstein M, Sidransky D, Vogelstein B, Harris CC. P53 mutations in human cancers. Science 1991;253:49-53.

    Google Scholar 

  117. Harris CC. P53 at the crossroads of molecular carcinogenesis and risk assessment. Science 1993;262:1980-1981.

    Google Scholar 

  118. Simon D, Goretzki PE, Grelev V, Ebling B, Reishaus E, Lyons J, Haubruck H, Roher HD. Significance of p53 in human thyroid tumors. World J Surg 1994;18:535-541.

    Google Scholar 

  119. Donghi R, Longoni A, Pilotti S, Michieli P, Della Porta G, Pierotti M. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest 1993;91:1753-1759.

    Google Scholar 

  120. Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang S-H, Koef¯er HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 1993;91:179-185.

    Google Scholar 

  121. Parada LF, Lang H, Weinberg RA, Wolf D, Rotter V. Cooperation between gene encoding p53 tumor antigen and ras in cellular transformation. Nature 1984;312:649-672.

    Google Scholar 

  122. Fogelfeld L, Bauer TK. P53 mutations in radiation-induced thyroid cancer. Thyroid 1995;5 (Suppl 1):5.

    Google Scholar 

  123. Fagin JA, Tang SH, Zeki K, Di Lauro R, Fusco A, Gonsky R. Reexpression of thyroid peroxidase in a derivative of an undifferentiated thyroid carcinoma cell line by introduction of wild-type p53. Cancer Res 1996;56:765-771.

    Google Scholar 

  124. Chellappan SP, Hiebert S, Mudry JM, Horowitz JM, Nevins JR. The E2F transcription factor is a cellular target for the RB protein. Cell 1991;65:1053-1065.

    Google Scholar 

  125. Stiegler P, Kasten M, Giordano A. The RB family of cell cycle regulatory factors. J Cell Biochem 1998;30-31 (Suppl):30-36.

    Google Scholar 

  126. Hatakeyama M, Weinberg RA. The role of RB in cell cycle control. Prog Cell Cycle Res 1995;1:9-19.

    Google Scholar 

  127. Muller H, Lukas J, Schneider A, et al. Cyclin D1 expression is regulated by the retinoblastoma protein. Proc Natl Acad Sci USA 1994;91:2945-2949.

    Google Scholar 

  128. Ledent C, Dumont J, Vassart G, Parmentier M. Thyroid adenocarcinomas secondary to tissue-specific expression of simian virus-40 large T-antigen in transgenic mice. Endocrinology 1991;129:1391-1401.

    Google Scholar 

  129. Holm R, Nesland JM. Retinoblastoma and p53 tumour suppressor gene protein expression in carcinomas of the thyroid gland. J Pathol 1994;172:267-272.

    Google Scholar 

  130. Freedman DA, Wu L, Levine AJ. Functions of the MDM2 oncoprotein. Cell Mol Life Sci 1999;55:96-107.

    Google Scholar 

  131. Zou M, Shi Y, Al-Sedairy S, Hussain SS, Farid NR. The expression of the MDM2 gene, a p53 binding protein, in thyroid carcinogenesis. Cancer 1995;76:314-318.

    Google Scholar 

  132. Jennings T, Bratslavsky G, Gerasimov G, Troshina K, Bronstein M, Dedov I, Alexandrova G, Figge J. Nuclear accumulation of MDM2 protein in well-differentiated papillary thyroid carcinomas. Exp Mol Pathol 1995;62:199-206.

    Google Scholar 

  133. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, Eng C, Parsons R. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997;16:64-67.

    Google Scholar 

  134. Longy M, Lacombe D. Cowden disease. Report of a family and review. Ann Genet 1996;39:35-42.

    Google Scholar 

  135. Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 1999;96:4240-4245.

    Google Scholar 

  136. Halachmi N, Halachmi S, Evron E, Cairns P, Okami K, Saji M, Westra WH, Zeiger MA, Jen J, Sidransky D. Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. Genes Chromosomes Cancer 1998;23:239-243.

    Google Scholar 

  137. Morin PJ, Vogelstein B, Kinzler KW. Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci USA 1996;93:7950-7954.

    Google Scholar 

  138. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996;87:159-170.

    Google Scholar 

  139. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997;275:1787-1790.

    Google Scholar 

  140. Harach RH, Williams GT, Williams ED. Familial adenomatous polyposis associated with thyroid carcinoma A distinct type of follicular cell neoplasm. Histopathology 1994;25:549-555.

    Google Scholar 

  141. Soravia C, Sugg SL, Berk T, Mitri A, Cheng H, Gallinger S, Cohen Z, Asa SL, Bapat BV. Familial adenomatous polyposisassociated thyroid cancer: a clinical, pathological, and molecular genetics study. Am J Pathol 1999;154:127-135.

    Google Scholar 

  142. Cetta F, Olschwang S, Petracci M, Montalto G, Baldi C, Zuckermann M, Costantini RM, Fusco A. Genetic alterations in thyroid carcinoma associated with familialadenomatous polyposis clinical implications and suggestions for early detection. World J Surg 1998;22:1231-1236.

    Google Scholar 

  143. Zeki K, Spambalg D, Sharifi N, Gonsky R, Fagin JA. Mutations of the adenomatous polyposis coli gene in sporadic thyroid neoplasms. J Clin Endocrinol Metab 1994;79:1317-1321.

    Google Scholar 

  144. Herrmann MA, Hay ID, Bartelt DH Jr., Ritland SR, Dahl RJ, Grant CS, Jenkins RB. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. J Clin Invest 1991;88:1596-1604.

    Google Scholar 

  145. Matsuo K, Tang SH, Fagin JA. Allelotype of human thyroid tumors: loss of chromosome 11q13 sequences in follicular neoplasms. Mol Endocrinol 1991;5:1873-1879.

    Google Scholar 

  146. Zedenius J, Wallin G, Svensson A, Bovee J, Hoog A, Backdahl M, Larsson C. Deletions of the long arm of chromosome 10 in progression of follicular thyroid tumors. Hum Genet 1996;97:299-303.

    Google Scholar 

  147. Grebe SK, Mclver B, Hay ID, Wu PS, Maciel LM, Drabkin HA, Goellner JR, Grant CS, Jenkins RB, Eberhardt NL. Frequent loss of heterozygosity on chromosomes 3p and 17p without VHL or p53 mutations suggests involvement of unidentified tumor suppressor genes in follicular thyroid carcinoma. J Clin Endocrinol Metab 1997;82:3684-3691.

    Google Scholar 

  148. Marsh DJ, Zheng Z, Zedenius J, Kremer H, Padberg GW, Larsson C, Longy M, Eng C. Differential loss of heterozygosity in the region of the Cowden locus within 10q22-23 in follicular thyroid adenomas and carcinomas. Cancer Res 1997;57:500-503.

    Google Scholar 

  149. Califano JA, Johns MM 3rd, Westra WH, Lango MN, Eisele D, Saji M, Zeiger MA, Udelsman R, Koch WM, Sidransky D. An allelotype of papillary thyroid cancer. Int J Cancer 1996;69:442-444.

    Google Scholar 

  150. Ward LS, Brenta G, Medvedovic M, Fagin JA. Studies of allelic loss in thyroid tumors reveal major differences in chromosomal instability between papillary and follicular carcinomas. J Clin Endocrinol Metab 1998;83:525-530.

    Google Scholar 

  151. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, Debelenko LV, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997;276:404-407.

    Google Scholar 

  152. Marx S, Spiegel AM, Skarulis MC, Doppman JL, Collins FS, Liotta LA. Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann Intern Med 1998;129:484-494.

    Google Scholar 

  153. Stratakis CA, Courcoutsakis NA, Abati A, Filie A, Doppman JL, Carney JA, Shawker T. Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas. J Clin Endocrinol Metab 1997;82:2037-2043.

    Google Scholar 

  154. Stratakis CA, Carney JA, Lin JP, Papanicolaou DA, Karl M, Kastner DL, Pras E, Chrousos GP. Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest 1996;97:699-705.

    Google Scholar 

  155. Casey M, Mah C, Merliss AD, Kirschner LS, Taymans SE, Denio AE, Korf B, Irvine AD, Hughes A, Carney JA, Stratakis CA, Basson CT. Identification of a novel genetic locus for familial cardiac myxomas and Carney complex. Circulation 1998;98:2560-2566.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarlis, N.J. Expression Patterns of Cellular Growth-Controlling Genes in Non-Medullary Thyroid Cancer: Basic Aspects. Rev Endocr Metab Disord 1, 183–196 (2000). https://doi.org/10.1023/A:1010079031162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010079031162

Navigation