Skip to main content
Log in

Low methane selectivity using Co/MnO catalysts for the Fischer-Tropsch reaction: Effect of increasing pressure and Co-feeding ethene

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

CO hydrogenation using cobalt/ manganese oxide catalysts is described and discussed. These catalysts are known to give low methane selectivity with high selectivity to C3 hydrocarbons at moderate reaction conditions (GHSV < 500 h−1, < 600 kPa). In this study the effect of reaction conditions more appropriate to industrial operation are investigated. CO hydrogenation at 1–2 MPa using catalyst formulations with Co/Mn = 0.5 and 1.0 gives selectivities to methane that are comparable to those observed at lower pressures. At the higher pressure the catalyst rapidly deactivates, a feature that is not observed at lower pressures. However, prior to deactivation rates of CO + CO2 conversion > 8 mol/1-catalyst h can be observed. Co-feeding ethene during CO hydrogenation is investigated by the reaction of13C0-12C2H4-H2 mixtures and a significant decrease in methane selectivity is observed but the hydrogenation of ethene is also a dominant reaction. The results show that the co-fed ethene can be molecularly incorporated but in addition it can generate a C, species that can react further to form methane and higher hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Dry, J. Mol. Catal. 17 (1982) 133.

    Google Scholar 

  2. P. Biloen and W.M.H. Sachtler, Adv. Catal. 30 (1981) 165.

    Google Scholar 

  3. G. van der Lee and V. Ponec, Catal. Rev. Sci. Eng. 29 (1987) 183.

    Google Scholar 

  4. R. Snel, Catal. Rev. Sci. Eng. 29 (1987) 361.

    Google Scholar 

  5. M.E. Dry, Catal. Today 6 (1990) 183.

    Google Scholar 

  6. J.P. Hindermann, G.J. Hutchings and A. Kiennemann, Catal. Rev. Sci. Eng. 35 (1993) 1.

    Google Scholar 

  7. H. Kolbel and K.D. Tillmetz, US Patent 4 177 203 (1976).

  8. K.B. Jensen and F.E. Massoth, J. Catal. 92 (1985) 98,109.

    Google Scholar 

  9. J. Barault and C. Renard, Appl. Catal. 14 (1985) 133.

    Google Scholar 

  10. B. Cornils, C.D. Frohning and K. Moraw,Proc. 8th Int. Congr. on Catalysis, Berlin, Vol. 2 (Verlag Chemie, Weinheim, 1984) p. 23.

    Google Scholar 

  11. M. van der Riet, G.J. Hutchings and R.G. Copperthwaite, J. Chem. Soc. Chem. Commun. (1986) 798.

  12. G.J. Hutchings, M. van der Riet and R. Hunter, J. Chem. Soc. Faraday Trans. 1 85 (1989) 2875.

    Google Scholar 

  13. S.E. Colley, R.G. Copperthwaite, G.J. Hutchings, S.P. Terblanche and M.M. Thackeray, Nature 339 (1989) 129.

    Google Scholar 

  14. R. Snel and R.L. Espinoza, C1 Mol. Chem. 1 (1986) 349.

    Google Scholar 

  15. Y.T. Eidus, Russ. Chem. Rev.(Engl. Transl.) 36 (1967) 338.

    Google Scholar 

  16. K. Tanaka, T. Nakagawa, I. Yaegashi, K. Aomura, J. Mol. Catal. 28 (1985) 239.

    Google Scholar 

  17. D.S. Jordon and AT. Bell, J. Phys. Chem. 90 (1986) 4797.

    Google Scholar 

  18. M. Leconte, A. Theolier, D. Rojas, A. Choplin and J.M. Basset,Proc. 8th Int. Congr. on, Catalysis, Berlin, Vol. 2 (Verlag Chemie, Weinheim, 1984) p. 145.

    Google Scholar 

  19. D.J. Dwyer and G.A. Somorjai, J. Catal. 56 (1979) 249.

    Google Scholar 

  20. D.S. Jordon and A.T. Bell, Preprints ACS, Div. Fuel Chem. 31 (1986) 1.

    Google Scholar 

  21. C.S. Keller and A.T. Bell, J. Catal. 70 (1981) 418.

    Google Scholar 

  22. J.G. Ekerdt and A.T. Bell, J. Catal. 62 (1980) 19.

    Google Scholar 

  23. C.J. Kim, US Patent 4 547 525 (1985).

  24. P.H. Emmett, W.K. Hall and R.J. Kokes, J. Am. Chem. Soc. 82 (1960) 1027.

    Google Scholar 

  25. C.L. Kibby, R.B. Pannell, T.P. Kobylinski, Preprints ACS, Div. Pet. Chem. 29 (1984) 1113.

    Google Scholar 

  26. Y.T. Eidus, N.D. Zelinskii, N.I. Ershov and M.I. Batuev, Isv. Akad. Nauk SSSR, Otdel. Khim. Nauk. (1950) 377.

  27. Y. Kobori, H. Yamasaki, S. Naito, T. Onishi and K. Tamura, J. Chem. Soc. Faraday Trans. I 78 (1982) 1473.

    Google Scholar 

  28. D.F. Smith, C.O. Hawk and P.L. Gordon, J. Am. Chem. Soc. 52 (1930) 3221.

    Google Scholar 

  29. G.C. Maiti, R. Malessa and M. Baerns, Appl. Catal. 5 (1983) 151.

    Google Scholar 

  30. C.J. Korf and R.L. Espinoza, CSIR (CERG) Report (1986) 584.

  31. R.G. Copperthwaite, N.J. Coville, M. van der Riet, G.J. Hutchings, S. Colley and M. Betts, J. Catal., to be published.

  32. J.H. Boelee, J.M.G. Custers and K. van der Wiele, Appl. Catal. 53 (1989) 1.

    Google Scholar 

  33. A.A. Adensina, R.R. Hudgins and P.L. Silveston, Appl. Catal. 62 (1990) 295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchings, G.J., Copperthwaite, R.G. & van der Riet, M. Low methane selectivity using Co/MnO catalysts for the Fischer-Tropsch reaction: Effect of increasing pressure and Co-feeding ethene. Top Catal 2, 163–172 (1995). https://doi.org/10.1007/BF01491964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01491964

Keywords

Navigation