Skip to main content
Log in

Anisotropic pinning in macroscopic electrodynamics of superconductors

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Anisotropy of critical currents and electric fields in superconductors with strong pinning has been ascribed in the macroscopic model to features of the material equation system relating the electric field to the current density in a superconductor. The anisotropy of the pinning proper is described by an operator relating the pinning force density to the vectors of magnetic induction and Lorentz force. In the approximation of an extended critical state model, a feasible expression of this operator is given in the form of an algorithm based on the concept of a collective anisotropic potential well containing fluxoids. The current-carrying capacity of a strongly anisotropic niobium-titanium foil as a function of the orientation of the current density and applied field with respect to the principal axes of the material has been investigated in detail. Given measurements of the transverse electric fields in the foil under magnetic fields normal to the foil plane, we can plot cross sections of surfaces describing the pinning force density in the space of magnetic induction and Lorentz force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Bergeron, Jr., Appl. Phys. Lett. 3, 63 (1963).

    Google Scholar 

  2. J. R. Clem and S. Yeh, J. Low Temp. Phys. 39, 173 (1980).

    Article  Google Scholar 

  3. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  4. E. H. Brandt, Rep. Prog. Phys. 58, 1465 (1995).

    Article  ADS  Google Scholar 

  5. V. M. Boroditch, A. C. Combarov, V. Ya. Filkin et al., in Low Temperature Physics-LT8 (Proc. of Int. Conf. LT8, London, 1962), R. O. Davies (ed.), Butterworth, London (1963), p. 348.

    Google Scholar 

  6. R. R. Hake, D. H. Leslie, and C. G. Rhodes, Low Temperature Physics-LT8 (Proc. of Int. Conf. LT8, London, 1962), R. O. Davies (ed.), Butterworth, London (1963)ibid., p. 342.

    Google Scholar 

  7. K.-P. Jungst, IEEE Trans. Magn. MAG-11, 340 (1975).

    Google Scholar 

  8. E. W. Collings, in Applied Superconductivity, Metallurgy and Physics of Titanium Alloys, Vol. 2, Plenum Press, London-New York (1986), p. 100.

    Google Scholar 

  9. B. ten Haken, L. J. M. van der Klundert, V. S. Vysotsky, and V. R. Karasik, IEEE Trans. Magn. 28, 755 (1992).

    Google Scholar 

  10. H. Kupfer and T. Matsushita, J. Appl. Phys. 63, 5060 (1988).

    ADS  Google Scholar 

  11. S. J. Williamson and J. K. Furdina, Phys. Lett. 21, 376 (1966).

    ADS  Google Scholar 

  12. C. M. Friend and D. P. Hampshire, in Applied Superconductivity (Proc. EUCAS-93), H. C. Freyhardt (ed.), DGM, Inform. Gesellschaft L. B. H. Verlag (1993), Vol. 1, p. 701.

  13. A. M. Campbell and J. E. Evetts, Critical Currents in Superconductors, Taylor and Francis Ltd., London (1972).

    Google Scholar 

  14. E. M. Georgy, R. B. van Dover, K. A. Jackson, L. F. Shneemeyer, and J. V. Waszczak, Appl. Phys. Lett. 55, 283 (1989).

    ADS  Google Scholar 

  15. F. M. Sauerzopf, H. P. Wiesenger, and H. W. Weber, Cryogenics 30, 650 (1990).

    Article  Google Scholar 

  16. H. P. Wiesinger, F. M. Sauerzopf, and H. W. Weber, Physica C 203, 121 (1992).

    Article  ADS  Google Scholar 

  17. G. Blatter, V. B. Geshkenbein, and A. I. Larkin, Phys. Rev. Lett. 68, 875 (1992).

    Article  ADS  Google Scholar 

  18. E. Yu. Klimenko and V. G. Kon, in Superconductivity (Proceedings of Conference on Technical Applications of Superconductivity, Alushta-75), Atomizdat, Moscow (1977), Vol. 4, p. 114.

    Google Scholar 

  19. V. R. Karasik and V. G. Vereshchagin, Zh. Éksp. Teor. Fiz. 59, 36 (1970) [Sov. Phys. JETP 32, 20 (1970)].

    Google Scholar 

  20. C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).

    Article  ADS  MATH  Google Scholar 

  21. E. Yu. Klimenko and N. N. Martovetsky, IEEE Trans. Magn. Mater. 28, 843 (1992).

    Google Scholar 

  22. A. K. Niessen, J. van Suchtelen, F. A. Staas, and W. D. Druyvesteyn, Phys. Lett. 13, 293 (1965).

    Google Scholar 

  23. E. J. Kramer, J. Appl. Phys. 44, 1360 (1973).

    Article  Google Scholar 

  24. J. Lowell, J. Phys. F: Metal Phys. 2, 547 (1972).

    ADS  Google Scholar 

  25. A. M. Campbell, J. Phys. C: Sol. St. Phys. 4, 3186 (1971).

    ADS  Google Scholar 

  26. A. I. Larkin, Zh. Éksp. Teor. Fiz. 58, 1466 (1970) [Sov. Phys. JETP 31, 784 (1970)].

    Google Scholar 

  27. A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979).

    Article  Google Scholar 

  28. C. B. Nunes and D. G. Pinatti, Supercond. Sci. Technol. 5, S256 (1992).

    Article  ADS  Google Scholar 

  29. E. H. Brandt, Phys. Rev. Lett. 57(11), 1347 (1986).

    Article  ADS  Google Scholar 

  30. A. K. Niessen and C. H. Weijsenfeld, J. Appl. Phys. 40, 384 (1969).

    Article  Google Scholar 

  31. V. N. Morgoon, V. A. Shklovskij, V. Bindilatti et al., Czech. J. Phys. 46, 1751 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 112, 1055–1081 (September 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimenko, E.Y., Shavkin, S.V. & Volkov, P.V. Anisotropic pinning in macroscopic electrodynamics of superconductors. J. Exp. Theor. Phys. 85, 573–587 (1997). https://doi.org/10.1134/1.558341

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558341

Keywords

Navigation