Skip to main content
Log in

Josephson array of mesoscopic objects. Modulation of system properties through the chemical potential

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The phase diagram of a two-dimensional Josephson array of mesoscopic objects (superconducting granules, superfluid helium in a porous medium, traps with Bose-condensed atoms, etc.) is examined. Quantum fluctuations in both the modulus and phase of the superconducting order parameter are taken into account within a lattice boson Hubbard model. Modulating the average occupation number n 0 of the sites in the system (the “number of Cooper pairs” per granule, the number of atoms in a trap, etc.) leads to changes in the state of the array, and the character of these changes depends significantly on the region of the phase diagram being examined. In the region where there are large quantum fluctuations in the phase of the superconducting order parameter, variation of the chemical potential causes oscillations with alternating superconducting (superfluid) and normal states of the array. On the other hand, in the region where the bosons interact weakly, the properties of the system depend monotonically on n 0. Lowering the temperature and increasing the particle interaction force lead to a reduction in the width of the region of variation in n 0 within which the system properties depend weakly on the average occupation number. The phase diagram of the array is obtained by mapping this quantum system onto a classical two-dimensional XY model with a renormalized Josephson coupling constant and is consistent with our quantum path-integral Monte Carlo calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Nacker and J. Dupont-Roc, Phys. Rev. Lett. 67, 2966 (1991).

    ADS  Google Scholar 

  2. J. D. Reppy, J. Low Temp. Phys. 67, 207 (1992).

    Google Scholar 

  3. H. S. J. van der Zant, F. C. Fritschy, J. E. Mooij et al., Phys. Rev. Lett. 69, 2971 (1992); J. E. Mooij, R. Fazio, G. Schön et al., Phys. Rev. Lett. 65, 645 (1990).

    ADS  Google Scholar 

  4. V. G. Gantmakher, V. M. Teplinskii, and V. N. Zverev, JETP Lett. 62, 887 (1995).

    ADS  Google Scholar 

  5. A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 65, 927 (1990).

    Article  ADS  Google Scholar 

  6. A. L. Dobryakov, Yu. E. Lozovik, A. A. Puretzky et al., Appl. Phys. A 54, 100 (1992).

    Article  Google Scholar 

  7. Yu. M. Mucharsky, A. Loshak, K. Schwab et al., Czech. J. Phys. 46, 115 (1996); S. V. Pereverzev, A. Loshak, S. Backhaus et al., Nature (London) 388, 449 (1997).

    Google Scholar 

  8. M. N. Anderson, J. R. Ensher, M. R. Mathews et al., Science 269, 198 (1995).

    ADS  Google Scholar 

  9. C. C. Bradley, C. A. Sackoff, J. J. Tollett et al., Phys. Rev. Lett. 75, 1687 (1995).

    ADS  Google Scholar 

  10. K. B. Davis, M.-O. Mewes, M. R. Andrew et al., Phys. Rev. Lett. 75, 3969 (1995).

    ADS  Google Scholar 

  11. M. R. Andrews, C. G. Towsend, J.-J. Miesner et al., Science 275, 637 (1997).

    Article  Google Scholar 

  12. Yu. E. Lozovik, submitted to Physica E (Amsterdam); Yu. E. Lozovik and O. L. Berman, Zh. Éksp. Teor. Fiz. 111, 1879 (1997) [JETP 84, 1027 (1997)]; Yu. E. Lozovik, O. L. Berman, and V. G. Tsvetus, JETP Lett. 66, 355 (1997).

  13. B. J. Kim and M. Y. Choi, Phys. Rev. B 52, 3624 (1995); B. J. Kim, J. Kim, M. Y. Choi et al., Phys. Rev. B 56, 395 (1997).

    ADS  Google Scholar 

  14. C. Bruder, R. Fazio, A. P. Kampf et al., Phys. Scr. T 42, 159 (1992).

    ADS  Google Scholar 

  15. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 165 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  16. G. T. Zimanyi, P. A. Crowell, R. T. Scalettar et al., Phys. Rev. B 50, 6515 (1994).

    Article  ADS  Google Scholar 

  17. M. P. A. Fisher and G. Grinstein, Phys. Rev. Lett. 60, 208 (1988); M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B 40, 546 (1989); M. P. A. Fisher, G. Grinstein, and S. M. Girvin, Phys. Rev. Lett. 64, 587 (1990).

    Article  ADS  Google Scholar 

  18. M. C. Cha, M. P. A. Fisher, S. M. Girvin et al., Phys. Rev. B 44, 6883 (1991).

    Article  ADS  Google Scholar 

  19. A. P. Kampf and G. T. Zimanyi, Phys. Rev. B 47, 279 (1993).

    Article  ADS  Google Scholar 

  20. W. Knauth, N. Trivedi, and D. Ceperley, Phys. Rev. Lett. 67, 2703 (1991); W. Krauth and N. Trivedi, Europhys. Lett. 14, 627 (1991).

    Google Scholar 

  21. V. A. Kashurnikov, A. V. Krasavin, and B. V. Svistunov, JETP Lett. 64, 99 (1996).

    Article  ADS  Google Scholar 

  22. A. V. Otterlo and K. H. Wagenblast, Phys. Rev. Lett. 72, 3598 (1994); E. Roddick and D. Stroud, Phys. Rev. B 51, 8672 (1995).

    ADS  Google Scholar 

  23. A. I. Belousov, S. A. Verzakov, and Yu. E. Lozovik, Zh. Éksp. Teor. Fiz. 113, 261 (1998) [JETP 86, 146 (1998)]; A. I. Belousov and Yu. E. Lozovik, JETP Lett. 66, 686 (1997).

    Google Scholar 

  24. S. Doniach, Phys. Rev. B 24, 5063 (1981).

    Article  ADS  Google Scholar 

  25. V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, Reidel, Dordrecht (1983).

    Google Scholar 

  26. J. J. Alvarez and C. A. Balseiro, Solid State Commun. 98, 313 (1996).

    Google Scholar 

  27. P. Olsson, Phys. Rev. B 52, 4511 (1995).

    ADS  Google Scholar 

  28. A. Blaer and J. Han, Phys. Rev. A 46, 3225 (1992).

    Article  ADS  Google Scholar 

  29. G. G. Batrouni, B. Larson, R. T. Scalettar et al., Phys. Rev. B 48, 9628 (1993).

    ADS  Google Scholar 

  30. P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).

    Article  ADS  Google Scholar 

  31. M. Jacobs, J. V. Jose, M. A. Novotny et al., Phys. Rev. B 38, 4562 (1988).

    Article  ADS  Google Scholar 

  32. S. L. Sondhi, S. M. Girvin, J. P. Carini et al., Rev. Mod. Phys. 69, 315 (1997).

    Article  ADS  Google Scholar 

  33. A. I. Belousov and S. G. Akopov, J. Phys. C 14, L31 (1981); S. G. Akopov and Yu. E. Lozovik, J. Phys. C 15, 4403 (1982).

    Google Scholar 

  34. A. I. Belousov and Yu. E. Lozovik, Solid State Commun. 100, 421 (1996); A. I. Belousov and Yu. E. Lozovik, Fiz. Tverd. Tela (St. Petersberg) 39, 1513 (1997) [Phys. Solid State 39, 1345 (1997)]; S. A. Verzakov and Yu. E. Lozovik, Fiz. Tverd. Tela (St. Petersberg) 39, 818 (1997) [Phys. Solid State 39, 724 (1997)].

    Article  Google Scholar 

  35. F. F. Assaad, W. Hanke, and D. J. Scalapino, Phys. Rev. B 50, 12 835 (1994).

    Article  Google Scholar 

  36. D. Marx and P. Nielaba, J. Chem. Phys. 102, 4538 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 114, 591–604 (August 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belousov, A.I., Berzakov, S.A. & Lozovik, Y.E. Josephson array of mesoscopic objects. Modulation of system properties through the chemical potential. J. Exp. Theor. Phys. 87, 322–328 (1998). https://doi.org/10.1134/1.558662

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558662

Keywords

Navigation