Skip to main content
Log in

Electron kinetics in collisionless shock waves

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the kinetic model of the formation of the energy spectrum of nonthermal electrons near the front of a quasilongitudinal, supercritical, collisionless shock wave. Nonresonant interactions of the electrons and the fluctuations generated by kinetic instabilities of the ions in the transition region inside the shock front play the main role in the heating and preacceleration of electrons. We calculate the electron energy spectrum in the vicinity of the shock wave and show that the heating and preacceleration of electrons occur on a scale of the order of several hundred ion inertial lengths in the vicinity of the viscous discontinuity. Although the electron distribution function is significantly nonequilibrium near the shock front, its low-energy part can be approximated by a Maxwellian distribution. The effective electron temperature T 2eff behind the front, obtained in this manner, increases with the Mach number of the shock wave slower than it would if it followed the Hugoniot adiabat. We determine the condition under which the electron heating is ineffective but the electrons are effectively accelerated to high energies. The high-energy asymptotic behavior of the distribution function is that of a power law, with the exponent determined by the total compression ratio of the plasma, as in the case of acceleration by the first-order Fermi mechanism. The model is used to describe the case (important for applications) of acceleration of electrons by shock waves with large total Mach numbers, with the structure of these waves modified by the nonlinear interaction of nonthermal ions and consisting of an extended prefront with a smooth variation of the macroscopic parameters and a viscous discontinuity in speed with a moderate value of the Mach number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Blandford and E. Eichler, Phys. Rep. 154, 2 (1987).

    Article  ADS  Google Scholar 

  2. A. A. Galeev, in Space Research [in Russian] (Itogi Nauki i Tekhniki), Vol. 27, All-Union Institute of Scientific and Technical Information, Moscow (1988), p. 3.

    Google Scholar 

  3. S. I. Vainshtein, A. M. Bykov, and I. N. Toptygin, Turbulence, Current Layers, and Shock Waves in Cosmic Plasma [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  4. F. C. Jones and D. C. Ellison, Space Sci. Rev. 58, 259 (1991).

    Article  ADS  Google Scholar 

  5. V. S. Ptuskin, Nuovo Cimento C 19, 755 (1996).

    Google Scholar 

  6. A. A. Galeev, Zh. Éksp. Teor. Fiz. 86, 1655 (1984) [Sov. Phys. JETP 59, 965 (1984)].

    ADS  Google Scholar 

  7. C. F. Kennel, J. P. Edmiston, and T. Hada, in Collisionless Shocks in the Heliosphere, B. T. Tsurutani and R. G. Stone (eds.), AGU, Washington (1985), p. 1.

    Google Scholar 

  8. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York (1967), Chap. 7.

    Google Scholar 

  9. B. T. Tsurutani and R. P. Lin, J. Geophys. Res. 90, 1 (1985).

    ADS  Google Scholar 

  10. J. R. Kan, M. E. Mandt, and L. H. Lyu, Space Sci. Rev. 57, 201 (1991).

    Article  ADS  Google Scholar 

  11. L. B. Quest, J. Geophys. Res. 93, 9649 (1988).

    ADS  Google Scholar 

  12. L. Bennett and D. C. Ellison, J. Geophys. Res. A 100, 3439 (1995).

    ADS  Google Scholar 

  13. D. L. Vaisberg, A. A. Galeev, G. N. Zastenker, S. I. Klimov, M. N. Nozdrachev, R. Z. Sagdeev, A. Yu. Sokolov, and V. D. Shapiro, Zh. Éksp. Teor. Fiz. 85, 1232 (1983) [Sov. Phys. JETP 58, 716 (1983)].

    ADS  Google Scholar 

  14. A. A. Galeev, M. A. Malkov, and H. J. Völk, J. Plasma Phys. 54, 59 (1995).

    Google Scholar 

  15. P. L. Biermann and J. P. Cassinelli, Astron. Astrophys. 277, 691 (1993).

    ADS  Google Scholar 

  16. K. G. McClements, R. O. Dendy, R. Bingham et al., Mon. Not. R. Astron. Soc. 291, 241 (1997).

    ADS  Google Scholar 

  17. L. Drury, Rep. Prog. Phys. 46, 973 (1983).

    Article  ADS  Google Scholar 

  18. E. G. Berezhko and G. F. Krymskii, Usp. Fiz. Nauk 154, 49 (1988) [Sov. Phys. Usp. 31, 27 (1988)].

    Google Scholar 

  19. D. C. Ellison and S. P. Reynolds, Astrophys. J. 382, 242 (1991).

    Article  ADS  Google Scholar 

  20. A. M. Bykov and Yu. A. Uvarov, JETP Lett. 57, 644 (1993).

    ADS  Google Scholar 

  21. I. N. Toptygin, Zh. Éksp. Teor. Fiz. 112, 1584 (1997) [JETP 85, 862 (1997)].

    Google Scholar 

  22. V. D. Shafranov, Zh. Éksp. Teor. Fiz. 32, 1453 (1957) [Sov. Phys. JETP 5, 1183 (1957)].

    MATH  Google Scholar 

  23. V. S. Imshennik, Zh. Éksp. Teor. Fiz. 42, 236 (1962) [sic].

    Google Scholar 

  24. A. Levinson, Astrophys. J. 401, 73 (1992); 426, 327 (1994).

    Article  ADS  Google Scholar 

  25. A. Levinson, Mon. Not. R. Astron. Soc. 278, 1018 (1996).

    ADS  Google Scholar 

  26. P. J. Cargill and K. Papadopoulos, Astrophys. J. 329, L29 (1988).

    Article  ADS  Google Scholar 

  27. P. Schneider and J. G. Kirk, Astron. Astrophys. 217, 344 (1989).

    ADS  Google Scholar 

  28. Y. A. Gallant and J. Arons, Astrophys. J. 435, 230 (1994).

    Article  ADS  Google Scholar 

  29. D. Krauss-Varban, Adv. Space Res. 15, 271 (1995).

    ADS  Google Scholar 

  30. A. M. Bykov and I. N. Toptygin, Usp. Fiz. Nauk 163(11), 19 (1993) [Phys. Usp. 36, 1020 (1993)].

    Google Scholar 

  31. S. Chandrasekhar, A. N. Kaufman, and K. M. Watson, Ann. Phys. 5, 1 (1958).

    MathSciNet  Google Scholar 

  32. I. N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  33. M. Scholer, J. Geophys. Res. 98, 47 (1993).

    ADS  Google Scholar 

  34. B. T. Draine and C. F. McKee, Annu. Rev. Astron. Astrophys. 31, 373 (1993).

    Article  ADS  Google Scholar 

  35. J. J. Blom, H. Bloemen, A. M. Bykov et al., Astron. Astrophys. 321, 288 (1997).

    ADS  Google Scholar 

  36. K. Koyama, R. Petre, E. V. Gotthelf et al., Nature (London) 378, 255 (1995).

    Article  ADS  Google Scholar 

  37. R. A. Chevalier, Astrophys. J. 258, 790 (1982).

    Article  ADS  Google Scholar 

  38. A. I. Asvarov, O. H. Guseinov, F. K. Kasimov, and V. A. Dogiel, Astron. Astrophys. 229, 196 (1990).

    ADS  Google Scholar 

  39. S. P. Reynolds, Astrophys. J. 493, 375 (1998).

    Article  ADS  Google Scholar 

  40. T. K. Gaisser, R. J. Protheroe, and T. Stanev, Astrophys. J. 492, 219 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 846–864 (March 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, A.M., Uvarov, Y.A. Electron kinetics in collisionless shock waves. J. Exp. Theor. Phys. 88, 465–475 (1999). https://doi.org/10.1134/1.558817

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558817

Keywords

Navigation