Skip to main content
Log in

Atomic structures of two-dimensional strained InAs epitaxial layers on a GaAs(001) surface: in situ observation of quantum dot growth

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy and reflection high-energy electron diffraction under ultrahigh vacuum conditions were used to make an in situ study of atomic structures at the surface of an InAs/GaAs heterostructure grown by molecular-beam epitaxy. It was observed that the deposition of approximately 0.3 ML of indium on an arsenic-enriched GaAs(001)-2 × 4 surface leads to the formation of the 4 × 2 phase while the deposition of 0.6 ML indium leads to the appearance of a new 6 × 2 reconstruction. It is shown that layer-by-layer two-dimensional epitaxial growth of InAs on GaAs(001) as far as 13 monolayers can only be achieved if the growth front reproduces the 4 × 2 or 6 × 2 symmetry of the substrate and models of 4 × 2 and 6 × 2 reconstructions are proposed. Atomic-resolution images of faceted planes on the surface of three-dimensional islands in an InAs/GaAs(001) system were obtained for the first time and structural models of these were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings of the JRDC International Symposium on Nanostructures and Quantum Effects, Tsukuba, Japan, 1993, Ed. by H. Sakaki and H. Noge (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  2. L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  3. Mesoscopic Physics and Electronics, Ed. by T. Ando, Y. Arakawa, K. Furuya, S. Komiyama, and H. Nakashima (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  4. I. N. Stranski and L. von Krastanow, Akad. Wiss. Lit. Mainz, Abh. Math. Naturwiss. Kl. 146, 797 (1939).

    Google Scholar 

  5. W. J. Schaffer, M. D. Lind, S. P. Kowalczyk, and R. W. Grant, J. Vac. Sci. Technol. B 1, 688 (1983).

    Article  Google Scholar 

  6. J. Tersoff, C. Teichert, and M. G. Lagally, Phys. Rev. Lett. 76, 1675 (1996).

    Article  ADS  Google Scholar 

  7. R. Z. Bakhtizin, T. Sakurai, T. Hashizume, and Qikun Xue, Usp. Fiz. Nauk 167, 1227 (1997) [Phys. Usp. 40, 1175 (1997)].

    Google Scholar 

  8. H. Yamaguchi and Y. Horikoshi, Jpn. J. Appl. Phys., Part 2 33, L1423 (1994).

  9. Y. Horikoshi, M. Kawashima, and H. Yamaguchi, Jp. J. Appl. Phys. 25, L868 (1986).

    Google Scholar 

  10. M. D. Pashley, Phys. Rev. B 40, 10481 (1989).

    Google Scholar 

  11. S. Ohkouchi and I. Tanaka, Appl. Phys. Lett. 59, 1588 (1991).

    Article  ADS  Google Scholar 

  12. S. W. Snyder, J. F. Mansfield, B. G. Orr, et al., Phys. Rev. B 46, 9551 (1992).

    Article  ADS  Google Scholar 

  13. A. Trampert, E. Tournie, and K. H. Ploog, Appl. Phys. Lett. 66, 2265 (1995).

    Article  ADS  Google Scholar 

  14. Y. W. Mo and M. G. Lagally, J. Cryst. Growth 111, 876 (1991).

    Article  Google Scholar 

  15. R. Butz and S. Kampers, Appl. Phys. Lett. 61, 1307 (1992).

    Article  ADS  Google Scholar 

  16. N. Ikoma and S. Ohkouchi, Jpn. J. Appl. Phys., Part 1 34, 5763 (1995).

    Google Scholar 

  17. R. Z. Bakhtizin, Qikun Xue, T. Sakurai, and T. Hashizume, Zh. Éksp. Teor. Fiz. 111, 1858 (1997) [JETP 84, 1016 (1997)].

    Google Scholar 

  18. Q.-K. Xue, Y. Hasegawa, T. Ogino, et al., J. Vac. Sci. Technol. B 15(4), 1270 (1997).

    Article  Google Scholar 

  19. R. Vincent, Philos. Mag. 19, 1127 (1969).

    Google Scholar 

  20. N. Cabrera, Surf. Sci. 2, 320 (1994).

    Google Scholar 

  21. W. A. Jesser and J. H. van der Merwe, Surf. Sci. 31, 229 (1972).

    Article  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1965; Pergamon, New York, 1986).

    Google Scholar 

  23. S. Priester and M. Lannoo, Phys. Rev. Lett. 75, 93 (1995).

    Article  ADS  Google Scholar 

  24. H. T. Dobbs, D. D. Vvedensky, and A. Zangwill, Phys. Rev. Lett. 79, 897 (1997).

    Article  ADS  Google Scholar 

  25. S. A. Kukushkin and A. V. Osipov, Usp. Fiz. Nauk 168, 1083 (1998) [Phys. Usp. 41, 983 (1998)].

    Google Scholar 

  26. D. Leonard, K. Pond, and P. M. Petroff, Phys. Rev. B 50, 11687 (1994).

    Google Scholar 

  27. G. S. Solomon, J. A. Trezza, and J. S. Harris, Jr., Appl. Phys. Lett. 66, 991 (1995).

    ADS  Google Scholar 

  28. K. Tillmann, D. Gerthsen, P. Pfundstein, et al., J. Appl. Phys. 78(6), 3824 (1995).

    Article  ADS  Google Scholar 

  29. N. P. Kobayashi, T. R. Ramachandran, P. Chen, and A. Madhukar, Appl. Phys. Lett. 68, 3299 (1996).

    Article  ADS  Google Scholar 

  30. J. M. Moison, F. Houzay, F. Barthe, et al., Appl. Phys. Lett. 64, 196 (1994).

    Article  ADS  Google Scholar 

  31. A. Madhukar, Q. Xie, P. Chen, and A. Konkar, Appl. Phys. Lett. 64, 2727 (1994).

    Article  ADS  Google Scholar 

  32. Y. Nabetani, T. Ishikawa, S. Noda, and S. Sasaki, J. Appl. Phys. 76, 347 (1994).

    Article  ADS  Google Scholar 

  33. S. Shimomura, A. Wakejima, A. Adachi, et al., Jpn. J. Appl. Phys., Part 2_32, L1728 (1993).

    Google Scholar 

  34. Y. Hsu, W. I. Wang, and T. S. Kuan, Phys. Rev. B 50, 4973 (1994).

    Article  ADS  Google Scholar 

  35. M. Wassermeier, J. Sudijono, M. D. Johnson, et al., Phys. Rev. B 51, 14721 (1995).

    Google Scholar 

  36. T. Yamada, H. Yamaguchi, and Y. Horikoshi, J. Cryst. Growth 150, 421 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 118, No. 5, 2000, pp. 1153–1166.

Original Russian Text Copyright © 2000 by Bakhtizin, Hasegawa, Xue, Sakurai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhtizin, R.Z., Hasegawa, Y., Xue, Q.K. et al. Atomic structures of two-dimensional strained InAs epitaxial layers on a GaAs(001) surface: in situ observation of quantum dot growth. J. Exp. Theor. Phys. 91, 1000–1010 (2000). https://doi.org/10.1134/1.1334990

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1334990

Keywords

Navigation