Skip to main content
Log in

Negative Poisson coefficient of fractal structures

  • Semiconductors. Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

On the basis of a fractal model the macroscopic elastic properties of an inhomogeneous medium with random structure have been determined. It is shown that if the ratio of the bulk moduli of the phases K 2/K 1→0, then the percolation threshold p c the Poisson coefficient is equal to 0.2. A study of the behavior of a two-phase medium with negative Poisson coefficient is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd English ed. (Pergamon Press, Oxford, 1986).

    Google Scholar 

  2. R. F. Almgren, J. Elast. 15, 427 (1985).

    Google Scholar 

  3. A. G. Kolpakov, Prikl. Mekh. Tekh. Fiz. 49, 969 (1985).

    MATH  MathSciNet  Google Scholar 

  4. D. J. Bergman, Phys. Rev. B 33, 2013 (1986); D. J. Bergman and E. Duering, Phys. Rev. B 34, 8199 (1986); E. Duering and D. J. Bergman, Phys. Rev. 37, 9460 (1988).

    Article  ADS  Google Scholar 

  5. R. Lakes, Science 235, 1038 (1987).

    ADS  Google Scholar 

  6. K. W. Wojciechowski, Mol. Phys. 61, 1247 (1987); K. W. Wojciechowski, Phys. Lett. A 137, 61 (1989); K. W. Wojciechowski and A. C. Brańka, Phys. Rev. A 40, 7222 (1989).

    Google Scholar 

  7. B. D. Caddock and K. E. Evans, J. Phys. D 22, 1877 (1989); K. E. Evans and B. D. Caddock, J. Phys. D 22, 1883 (1989).

    Article  ADS  Google Scholar 

  8. R. Lakes, Adv. Mater. 5, 293 (1993); see also references therein.

    Article  Google Scholar 

  9. D. H. Boal, U. Seifert, and J. C. Schillcock, Phys. Rev. E 48, 4274 (1993).

    Article  ADS  Google Scholar 

  10. K. W. Wojciehowski, Mol. Phys. Rep. 10, 129 (1995).

    Google Scholar 

  11. E. O. Martz, R. S. Lakes, and J. B. Park, Cellular Polymers 15, 349 (1996).

    Google Scholar 

  12. D. Prall and R. Lakes, Int. J. Mech. Sci. 39, 305 (1997).

    Article  Google Scholar 

  13. U. D. Larsen, O. Sigmund, and S. Bouwstra, J. Macromech. Systems 6, 99 (1997).

    Google Scholar 

  14. P. S. Theocaris, G. E. Stavroulakis, and P. D. Panagiotopoulos, Arch. Appl. Mech. 67, 274 (1997).

    Google Scholar 

  15. G. Y. Wei and S. F. Edwards, Physica A 258, 5 (1998).

    Article  Google Scholar 

  16. V. V. Novikov and V. P. Belov, Zh. Éksp. Teor. Fiz. 106,3(9), 780 (1994) [JETP 79, 428 (1994)].

    Google Scholar 

  17. V. V. Novikov, O. P. Poznansky, and V. P. Privalko, Sci. Eng. Compos. Mater. 4, 49 (1995).

    Google Scholar 

  18. V. V. Novikov and O. P. Poznan’skii, Fiz. Tverd. Tela (St. Petersburg) 37, 830 (1995) [Phys. Solid State 37, 451 (1995)].

    Google Scholar 

  19. V. V. Novikov, Teplofiz. Vys. Temp. 34, 698 (1996).

    Google Scholar 

  20. V. V. Novikov, Fiz. Met. Metalloved. 4, 27 (1997).

    Google Scholar 

  21. S. Feng and P. N. Sen, Phys. Rev. Lett. 52, 216 (1984).

    Article  ADS  Google Scholar 

  22. S. Feng and M. Sahimi, Phys. Rev. B 31, 1671 (1985).

    ADS  Google Scholar 

  23. Y. Kantor and I. Webman, Phys. Rev. Lett. 52, 1981 (1984).

    Article  ADS  Google Scholar 

  24. D. J. Bergman and Y. Kantor, Phys. Rev. Lett. 53, 511 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Arbabi and M. Sahimi, Phys. Rev. B 38, 7173 (1988).

    Article  ADS  Google Scholar 

  26. H. J. Herrmann and H. E. Stanley, J. Phys. A 21, 1829 (1988).

    Article  MathSciNet  Google Scholar 

  27. S. Arbabi and M. Sahimi, Phys. Rev. B 47, 695 (1993).

    Article  ADS  Google Scholar 

  28. M. Sahimi and S. Arbabi, Phys. Rev. B 47, 703 (1993).

    ADS  Google Scholar 

  29. P. de Gennes, Scaling Concepts in the Physics of Polymers (Benjamin, New York, 1966).

    Google Scholar 

  30. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (University Press, Oxford, 1971).

    Google Scholar 

  31. A. Coniglio and H. E. Stanley, Phys. Rev. Lett. 52, 1068 (1984).

    Article  ADS  Google Scholar 

  32. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1992).

    Google Scholar 

  33. P. J. Reynolds, H. E. Stanley, and W. Klein, Phys. Rev. B 21, 1223 (1980).

    Article  ADS  Google Scholar 

  34. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  35. D. A. S. Weitz and M. Oliveira, Phys. Rev. Lett. 52, 1433 (1984).

    Article  ADS  Google Scholar 

  36. V. P. Privalko and V. V. Novikov, The Science of Heterogeneous Polymers: Structure and Thermophysical Properties (Wiley, Chichester, 1995).

    Google Scholar 

  37. L. Pietronero and E. Tosatti, Fractals in Physics (North-Holland, Amsterdam, 1986).

    Google Scholar 

  38. K. G. Wilson and J. B. Kogut, Phys. Rep. 9, 75 (1974).

    ADS  Google Scholar 

  39. J. Bernasconi, Phys. Rev. B 18, 2185 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  40. Z. Hashin and S. A. Shtrikman, J. Mech. Phys. Solids 11, 127 (1963).

    MathSciNet  Google Scholar 

  41. Z. Hashin, J. Appl. Meteorol. 50, 481 (1983).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 41, 2147–2153 (December 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, V.V., Wojciechowski, K.W. Negative Poisson coefficient of fractal structures. Phys. Solid State 41, 1970–1975 (1999). https://doi.org/10.1134/1.1131137

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1131137

Keywords

Navigation