Skip to main content
Log in

Tellurium recrystallization under microgravity conditions and the resulting properties of samples

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Three experiments on the tellurium recrystallization by a modified Bridgman method were performed under microgravity conditions on board the Mir orbital space laboratory using a ChSK-1 Kristallizator furnace. The physical properties of samples were studied, including the final crystal structure, the distribution of impurities and defects, and the charge carrier concentration and mobility. The results were compared to the analogous parameters of crystals remelted using the same method under the normal gravity conditions. It is established that the samples recrystallized in a close volume under the on-board microgravity conditions “break off” from the container walls and touch the walls only in a few points. This circumstance gives rise to special effects, such as the growth of crystals with a free surface and deep supercooling. Study of the distribution of electrically active impurities over the length of ingots shows evidence of the presence of thermocapillary convective flows in the melt under the microgravity conditions. The flows tend to increase upon separation of the melt from the container walls. The contributions due to impurities and electrically active structural defects to the charge carrier distribution are taken into account. The single-crystal sample obtained upon the partial recrystallization of tellurium in a close container volume under the on-board microgravity conditions exhibits the electrical characteristics comparable to those of a crystal grown by the Czochralski technique under the normal gravity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Grosse, Die Festkörpereigenschaften von Tellur, in Springer Tractats in Modern Physics (Springer, Berlin, 1969), Vol. 48.

    Google Scholar 

  2. R. V. Parfen’ev, I. I. Farbshtein, and S. S. Shalyt, Fiz. Tverd. Tela (Leningrad) 2(11), 2923 (1960).

    Google Scholar 

  3. L. L. Regel’, A. M. Turchaninov, R. V. Parfen’ev, et al., J. Phys. III (Paris) 2, 373 (1992).

    Google Scholar 

  4. I. I. Farbshtein, R. V. Parfeniev, N. K. Shulga, and L. L. Regel, in Material Processing in High Gravity, Ed. by L. L. Regel and W. R. Wilcox (Plenum Press, New York, 1994), pp. 81–84.

    Google Scholar 

  5. L. L. Regel, I. V. Vidensky, A. V. Mikhailov, A. M. Turchaninov, R. V. Parfeniev, I. I. Farbshtein, N. K. Shulga, and B. T. Melekh, Preprint IAF-86-283 (1986).

  6. R. V. Parfeniev, I. I. Farbshtein, S. V. Yakimov, V. P. Shalimov, and A.M. Turchaninov, Proceedings of the Joint Xth European and VIth Russian Symposium on Physical Sciences in Microgravity (St. Petersburg, 15–20 June 1997), Abstract No. 98 (1997).

  7. R. V. Parfeniev, L. L. Regel’, and W. R. Wilcox, Proceedings IAAA-97, IAA 12.01.08 (1997).

  8. L. L Regel’, Space Materials Science. Part II [in Russian] (Achievements in Science and Technology, Ser. Space Research, Vol. 29) (VINITI, Moscow, 1987), p. 146.

    Google Scholar 

  9. A. R. Lang, in Diffraction and Microscopic Techniques in Materials Science [Russian translation] (Metallurgiya, Moscow, 1984).

    Google Scholar 

  10. E. Scheil, Z. Metallk. 34, 70 (1942).

    Google Scholar 

  11. W. A. Tiller, K. A. Jackson, J. W. Rutter, et al., Acta Met. 1, 428 (1953).

    Article  Google Scholar 

  12. V. S. Avduevskii, S. D. Grishin, and L. V. Leskov, in Scientific Readings in Aviation and Cosmonautics-1980 (Nauka, Moscow, 1981), pp. 15–24.

    Google Scholar 

  13. J. A. Burton, R. C. Prim, and W. P. Slichter, J. Chem. Phys. 21(11), 1987 (1953).

    Google Scholar 

  14. B. Cabane and J. Friedel, J. Phys. 32, 73 (1971).

    Google Scholar 

  15. A. R. Regel’ and V. M. Glazov, Physical Properties of Electronic Melts (Nauka, Moscow, 1980).

    Google Scholar 

  16. I. I. Farbshtein, A. M. Pogarskii, and S. S. Shalyt, Fiz. Tverd. Tela (Leningrad) 7(8), 2383 (1965).

    Google Scholar 

  17. C. Erginsoy, Phys. Rev. 79, 1013 (1950).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 42, No. 2, 2000, pp. 238–245.

Original Russian Text Copyright © 2000 by Parfen’ev, Farbshte\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \)n, Shul’pina, Yakimov, Shalimov, Turchaninov, Ivanov, Savin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parfen’ev, R.V., Farbshtein, I.I., Shul’pina, I.L. et al. Tellurium recrystallization under microgravity conditions and the resulting properties of samples. Phys. Solid State 42, 244–252 (2000). https://doi.org/10.1134/1.1131154

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1131154

Keywords

Navigation