Skip to main content
Log in

Current-induced suppression of superconductivity in a three-dimensional lattice of weakly linked indium grains in opal

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The current-voltage characteristics of the metal-dielectric composite have been investigated in the range of the resistive state near the superconducting transition temperature T c . The composite structure can be represented as a face-centered cubic lattice, which involves a large number of weakly linked indium nanograins and is stabilized in structural cavities of opal. The response to microwave radiation is used to characterize the resistive state of the composite. The comparative investigation into the current-voltage characteristics and the response of the composite to microwave radiation makes it possible to conclude that the weak links are superconducting in the region of critical current (I c ) of the composite as a whole. The transition of weak links to the resistive state occurs at currents immediately preceding the transition of the composite from the resistive state to the ohmic state. The model of resistivity of the indium-opal composite is proposed on the basis of morphological examinations. According to this model, the energy dissipation in the resistive state is brought about by the quasi-discrete (due to the quantization of the magnetic flux in circuits of a three-dimensional lattice comprised of multiply connected grains) redistribution of transport current over the cross-section of composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Romanov and C. M. Sotomayor Torres, in Handbook of Nanostructural Materials and Nanotechnology, Ed. by H. S. Halwa (Academic Press, 1999), Vol. 4, pp. 231–323.

  2. H.-T. S. Lihn and H. D. Drew, Phys. Rev. B 56, 5559 (1997).

    Article  ADS  Google Scholar 

  3. R. Escudero and H. J. T. Smith, Phys. Rev. B 31, 2725 (1985); T. Kommers and J. Clark, Phys. Rev. Lett. 38, 1091 (1977); T. M. Klapwijk and J. E. Mooij, Physica B (Amsterdam) 81, 132 (1976); P. M. Th. M. van Attekum and J. J. Ramekers, Solid State Commun. 43, 735 (1982); J. E. Mooij and T. M. Klapwijk, Phys. Rev. B 27, 3054 (1983); D. R. McIntosh and J. Lindesay, Phys. Rev. B 50, 15852 (1994).

    Article  ADS  Google Scholar 

  4. R. Kleiner and P. Muller, Phys. Rev. B 49, 1327 (1994).

    Article  ADS  Google Scholar 

  5. S. P. Benz and C. J. Burroughs, Appl. Phys. Lett. 58, 2162 (1991).

    Article  ADS  Google Scholar 

  6. A. K. Jain, K. K. Likharev, J. E. Lukens, et al., Phys. Rep. 109, 309 (1984).

    Article  ADS  Google Scholar 

  7. S. G. Lachenmann, T. Doderer, D. Hoffmann, et al., Phys. Rev. B 50, 3158 (1994).

    Article  ADS  Google Scholar 

  8. V. N. Bogomolov, Usp. Fiz. Nauk 124, 77 (1972).

    Google Scholar 

  9. V. N. Bogomolov, V. V. Zhuravlev, A. I. Zadorozhnyi, et al., Pis’ma Zh. Éksp. Teor. Fiz. 36, 298 (1982) [JETP Lett. 36, 365 (1982)].

    Google Scholar 

  10. V. N. Bogomolov, Y. A. Kumzerov, S. G. Romanov, et al., Physica C (Amsterdam) 208, 371 (1993).

    ADS  Google Scholar 

  11. S. G. Romanov, Pis’ma Zh. Éksp. Teor. Fiz. 59, 778 (1994) [JETP Lett. 59, 809 (1994)].

    Google Scholar 

  12. V. G. Balakirev, V. N. Bogomolov, V. V. Zhuravlev, et al., Kristallografiya 38, 111 (1993) [Crystallogr. Rep. 38, 348 (1993)].

    Google Scholar 

  13. V. V. Tretyakov, S. G. Romanov, A. V. Fokin, et al., Mikrochim. Acta, No. S15, 211 (1998).

  14. V. N. Bogomolov, L. M. Sorokin, D. A. Kurdyukov, et al., Fiz. Tverd. Tela (S.-Peterburg) 39, 2090 (1997) [Phys. Solid State 39, 1869 (1997)].

    Google Scholar 

  15. H. T. Vogel and M. M. Garland, J. Appl. Phys. 38, 5116 (1967).

    Article  Google Scholar 

  16. K. Kh. Babamuratov, V. V. Zhuravlev, Yu. A. Kumzerov, et al., Fiz. Tverd. Tela (Leningrad) 35, 1577 (1993) [Phys. Solid State 35, 795 (1993)].

    Google Scholar 

  17. K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).

    Article  ADS  Google Scholar 

  18. P. Martinoli, Phys. Rev. B 17, 1175 (1978).

    Article  ADS  Google Scholar 

  19. S. G. Lachenmann, T. Doderer, R. P. Huebener, et al., Phys. Rev. B 56, 5564 (1997).

    ADS  Google Scholar 

  20. I. O. Kulik and A. N. Omel’yanchuk, Fiz. Nizk. Temp. (Kiev) 3, 945 (1977) [Sov. J. Low Temp. Phys. 3, 459 (1977)].

    Google Scholar 

  21. T. M. Klapwijk, G. E. Blonder, and M. Tinkham, Physica B + C (Amsterdam) 109–110, 1657 (1982).

    Google Scholar 

  22. J. E. Mooij and P. Dekker, J. Low Temp. Phys. 33, 551 (1978).

    Article  Google Scholar 

  23. S. G. Romanov, in Critical Currents in Superconductors, Ed. by H. W. Weber (World Scientific, 1994), p. 473.

  24. S. G. Romanov, A. V. Fokin, and K. Kh. Babamuratov, Pis’ma Zh. Éksp. Teor. Fiz. 58, 883 (1993) [JETP Lett. 58, 824 (1993)].

    Google Scholar 

  25. E. C. Babaev and S. A Ktitorov, Phys. Solid State 39, 1024 (1997).

    Article  ADS  Google Scholar 

  26. J. A. Pals and J. Dobben, Phys. Rev. Lett. 44, 1143 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 42, No. 4, 2000, pp. 581–588.

Original Russian Text Copyright © 2000 by Romanov, Shamshur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanov, S.G., Shamshur, D.V. Current-induced suppression of superconductivity in a three-dimensional lattice of weakly linked indium grains in opal. Phys. Solid State 42, 594–602 (2000). https://doi.org/10.1134/1.1131255

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1131255

Keywords

Navigation