Skip to main content
Log in

Indium layers in low-temperature gallium arsenide: Structure and how it changes under annealing in the temperature range 500–700 °C

  • Atomic Structure and Non-Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Transmission electron microscopy is used to study the microstructure of indium δ layers in GaAs(001) grown by molecular beam epitaxy at low temperature (200 °C). This material, referred to as LT-GaAs, contains a high concentration (≈1020 cm−3) of point defects. It is established that when the material is δ-doped with indium to levels equivalent to 0.5 or 1 monolayer (ML), the roughness of the growth surface leads to the formation of InAs islands with characteristic lateral dimensions <10 nm, which are distributed primarily within four adjacent atomic layers, i.e., the thickness of the indium-containing layer is 1.12 nm. Subsequent annealing, even at relatively low temperatures, leads to significant broadening of the indium-containing layers due to the interdiffusion of In and Ga, which is enhanced by the presence of a high concentration of point defects, particularly V Ga, in LT-GaAs. By measuring the thickness of indium-containing layers annealed at various temperatures, the interdiffusion coefficient is determined to be D In-Ga=5.1×10−12 exp(−1.08 eV/kT) cm2/s, which is more than an order of magnitude larger than D In-Ga for stoichiometric GaAs at 700 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. N. Smith, A. R. Calawa, C. L. Chen, M. J. Manfra, and L. J. Mahoney, IEEE Trans. Electron Devices 9, 77 (1988).

    Google Scholar 

  2. M. Kaminska, E. R. Weber, Z. Liliental-Weber, R. Leon, and Z. Rek J. Vac. Sci. Technol. 7, 710 (1989).

    Google Scholar 

  3. M. R. Melloch, D. C. Miller, and B. Das, Appl. Phys. Lett. 54, 943 (1989).

    Article  ADS  Google Scholar 

  4. M. R. Melloch, N. Otsuka, K. Mahalingam, C. L. Chang, P. D. Kircher, J. Woodall, and A. C. Warren, Appl. Phys. Lett. 61, 177 (1992).

    Article  ADS  Google Scholar 

  5. N. A. Bert, V. V. Chaldyshev, D. I. Lubyshev, V. V. Preobrazhenskii, and V. R. Semyagin, Fiz. Tekh. Poluprovodn. 29, 2242 (1995) [Semiconductors 29, 1170 (1995)].

    Google Scholar 

  6. N. A. Bert, V. V. Chaldyshev, A. E. Kunitsyn, Yu. G. Musikhin, N. N. Faleev, V. V. Tretyakov, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Semicond. Sci. Technol. 12, 51 (1997).

    Article  ADS  Google Scholar 

  7. U. Gösele, T. U. Tan, M. Schultz, U. Egger, P. Werner, R. Scholz, and O. Breitenstein, Defect Diffus. Forum 143–147, 1079 (1997).

    Google Scholar 

  8. X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, Appl. Phys. Lett. 67, 279 (1995).

    ADS  Google Scholar 

  9. C. Kisielovski, A. R. Calawa, and Z. Liliental-Weber, J. Appl. Phys. 80, 156 (1996).

    ADS  Google Scholar 

  10. J. C. P. Chang, J. M. Woodal, M. R. Melloch, I. Lahiri, D. D. Nolte, N. Y. Li, and C. W. Tu, Appl. Phys. Lett. 67, 3491 (1995).

    ADS  Google Scholar 

  11. I. Lahiri, D. D. Nolte, J. C. P. Chang, J. M. Woodal, and M. R. Melloch, Appl. Phys. Lett. 67, 1244 (1995).

    ADS  Google Scholar 

  12. I. Lahiri, D. D. Nolte, M. R. Melloch, J. M. Woodal, and W. Walukiewicz, Appl. Phys. Lett. 69, 239 (1996).

    ADS  Google Scholar 

  13. J. C. Tsang, C. P. Lee, S. H. Lee, K. L. Tsai, C. M. Tsai, and J. C. Fan, J. Appl. Phys. 79, 644 (1994).

    Google Scholar 

  14. R. E. Mallard, N. J. Long, G. R. Booker, E. G. Scott, M. Hockly, and M. Taylor, J. Appl. Phys. 70, 182 (1991).

    Article  ADS  Google Scholar 

  15. J.-L. Rouviere, Y. Kim, J. Cunningham, J. A. Rentscsler, A. Bourett, and A. Ourmazd, Phys. Rev. Lett. 68, 2798 (1992).

    Article  ADS  Google Scholar 

  16. M. P. A. Viegers, A. F. de Jong, and M. R. Leys, Spectrochim. Acta B 40, 835 (1985).

    Article  ADS  Google Scholar 

  17. A. Ourmazd, J. Cryst. Growth 98 72 (1989).

    Article  Google Scholar 

  18. Y. Kim, A. Ourmazd, M. Bode, and D. Feldman, Phys. Rev. Lett. 63, 636 (1989).

    ADS  Google Scholar 

  19. J. Gebauer, R. Krause-Rehberg, S. Eichler, M. Luysberg, H. Sohn, and E. R. Weber, Appl. Phys. Lett. 71, 638 (1997).

    Article  ADS  Google Scholar 

  20. W. Feng, F. Chen, W. Q. Cheng, Q. Huang, and J. M. Zhou, Appl. Phys. Lett. 71, 1676 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 32, 769–774 (July 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bert, N.A., Suvorova, A.A., Chaldyshev, V.V. et al. Indium layers in low-temperature gallium arsenide: Structure and how it changes under annealing in the temperature range 500–700 °C. Semiconductors 32, 683–688 (1998). https://doi.org/10.1134/1.1187483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187483

Keywords

Navigation