Skip to main content
Log in

Charge density: A probe for the nuclear interaction in microscopic transport models

  • OriginalPaper
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The transport properties of the 36Ar +58Ni system at \(95 \mathrm{A} \cdot \mathrm{MeV}\) measured with the INDRA array, are studied within the BNV kinetic equation. A general protocol of comparison between the N-body experimental fragment information and the one-body distribution function is developed using global variables, with a special focus on charge density. This procedure avoids any definition of sources and any use of an afterburner in the simulation. We shall discuss the feasibility of such an approach and the distortions induced by the finite detection efficiency and the completeness requirements of the data selection. The sensitivity of the different global observables to the macroscopic parameters of the effective nuclear interaction will be studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Borderie, M. Montoya, M.F. Rivet, D. Jouan, C. Cabot et al., Phys. Lett. B 205, 26 (1988).

    Article  Google Scholar 

  2. B. Lott, S.P. Baldwin, B.M. Szabo, B.M. Quedneau, W.U. Schröder et al., Phys. Rev. Lett. 68, 3141 (1992).

    Article  Google Scholar 

  3. J.F. Lecolley, L. Stugge, M. Aboufirassi, A. Badala, B. Bilwes et al., Phys. Lett. B 325, 317 (1994).

    Article  Google Scholar 

  4. INDRA Collaboration (V. Métivier, B. Tamain, G. Auger, C.O. Bacri, J. Benlliure et al.), Nucl. Phys. A 672, 357 (2000).

    Article  Google Scholar 

  5. M. Lefort, C. Ngô, Ann. Phys. (Paris) 3, 5 (1978).

    Google Scholar 

  6. W.U. Schröder, J.R. Huizenga, Treatise on Heavy Ion Science, Vol. 2 (Plenum Press, New York, 1984).

  7. INDRA Collaboration (J. Łukasik, J. Benlliure, V. Métivier, E. Plagnol, B. Tamain et al.), Phys. Rev. C 55, 1906 (1997).

    Article  Google Scholar 

  8. INDRA Collaboration (E. Plagnol, J. Łukasik, G. Auger, C.O. Bacri, N. Bellaize et al.), Phys. Rev. C 61, 014606 (1999).

    Article  Google Scholar 

  9. INDRA Collaboration (T. Lefort, D. Doré, D. Cussol, Y. Ma, J. Péter et al.), Nucl. Phys. A 662, 397 (2000).

    Article  Google Scholar 

  10. INDRA Collaboration (D. Doré, P. Buchet, J.L. Charvet, R. Dayras, L. Nalpas et al.), Phys. Lett. B 491, 15 (2000).

    Google Scholar 

  11. INDRA Collaboration (P. Pawłowski, B. Borderie, G. Auger, C.O. Bacri, N. Bellaize et al.), Eur. Phys. J. A 9, 371 (2000).

    Google Scholar 

  12. INDRA Collaboration (D. Doré, C. Volant, J. Cugnon, R. Legrain, G. Auger et al.), Phys. Rev. C 63, 034612 (2001).

    Google Scholar 

  13. A. Bonasera et al., Phys. Rep. 243, 1 (1994).

    Google Scholar 

  14. F. Sébille, G. Royer, C. Grégoire, B. Remaud, P. Schuck, Nucl. Phys. A 501, 137 (1989).

    Google Scholar 

  15. A. Guarnera, M. Colonna, P. Chomaz, Phys. Lett. B 373, 267 (1996).

    Google Scholar 

  16. J. Aichelin, Phys. Rep. 202, 233 (1991).

    Article  Google Scholar 

  17. A. Ono et al., Prog. Theor. Phys. 87, 1185 (1992).

    Google Scholar 

  18. H. Feldmeier, Nucl. Phys. A 515, 147 (1990).

    Article  Google Scholar 

  19. INDRA Collaboration (J.F. Lecolley, E. Galichet, D.C.R. Guinet, R. Bougault, F. Gulminelli et al.), Nucl. Instrum. Methods Phys. Res. A 441, 517 (2000).

    Google Scholar 

  20. K. Chen, Z. Fraenkel, G. Friedlander, J.R. Grover, J.M. Miller et al., Phys. Rev. 166, 949 (1968).

    Article  Google Scholar 

  21. V. Greco, A. Guarnera, M. Colonna, M. Di Toro, Phys. Rev. C 59, 810 (1998).

    Google Scholar 

  22. J. Singh, S. Kumar, R.K. Puri, Phys. Rev. C 62, 044617 (2000).

    Google Scholar 

  23. G.Q. Li, R. Machleidt, Phys. Rev. C 48, 1702 (1993).

    Google Scholar 

  24. G.Q. Li, R. Machleidt, Phys. Rev. C 49, 566 (1994).

    Google Scholar 

  25. T. Alm, G. Röpke, M. Schmidt, Phys. Rev. C 50, 31 (1994).

    Google Scholar 

  26. G. Giansiracusa, U. Lombardo, N. Sandulescu, Phys. Rev. C 53, 1478 (1996).

    Google Scholar 

  27. C. Fuchs, L. Sehn, H. Wolter, Nucl. Phys. A 601, 505 (1996).

    Google Scholar 

  28. V. Baran, M. Colonna, M. Di Toro, V. Greco, M. Zielinska-Pfabé et al., Nucl. Phys. A 703, 603 (2002).

    Google Scholar 

  29. M. Zielinska-Pfabé, C. Grégoire, Phys. Rev. C 37, 2594 (1988).

    Google Scholar 

  30. E. Galichet, thèse de doctorat, Université Claude Bernard Lyon 1 (1998), LYCEN-T 9868.

  31. INDRA Collaboration (J.D. Frankland, C.O. Bacri, B. Borderie, M.F. Rivet, M. Squalli et al.), Nucl. Phys. A 689, 905 (2001).

    Article  Google Scholar 

  32. INDRA Collaboration (M.F. Rivet, A. Chbihi, B. Borderie, D. Doré, P. Eudes et al.), Phys. Lett. B 388, 219 (1996).

    Google Scholar 

  33. INDRA Collaboration (B. Borderie, D. Durand, F. Gulminelli, M. Pârlog, M.F. Rivet et al., Phys. Lett. B 388, 224 (1996).

    Google Scholar 

  34. E. Galichet, the INDRA Collaboration, in Proceedings of the XXXVI International Winter Meeting on Nuclear Physics, Bormio, Italy (1998), edited by I. Iori (Università degli Studi di Milano).

  35. M. D’Agostino, A. Botvina, M. Bruno, A. Bonasera, J.P. Bondorf et al., Nucl. Phys. A 650, 329 (1999).

    Google Scholar 

  36. INDRA Collaboration (N. Marie, R. Laforest, R. Bougault, J.P. Wieleczko, D. Durand et al.), Phys. Lett. B 391, 15 (1997).

    Article  Google Scholar 

  37. J. Pouthas, B. Borderie, R. Dayras, E. Plagnol, M.F. Rivet et al., Nucl. Instrum. Methods Phys. Res. A 357, 418 (1995).

    Article  Google Scholar 

  38. J. Pouthas, A. Bertaut, B. Borderie, P. Bourgault, B. Cahan et al., Nucl. Instrum. Methods Phys. Res. A 369, 222 (1996).

    Article  Google Scholar 

  39. J.C. Steckmeyer, D. Cussol, J. Duchon, J. Gautier, J. Laville et al., Nucl. Instrum. Methods Phys. Res. A 361, 472 (1995).

    Google Scholar 

  40. C. Cavata, M. Demoulins, J. Gosset, M.C. Lemaire, D. L’Hote et al., Phys. Rev. C 42, 1760 (1990).

    Google Scholar 

  41. S. Kox, A. Gamp, R. Cherkaoui, A.J. Cole, N. Longequeue et al., Nucl. Phys. A 420, 162 (1984).

    Google Scholar 

  42. B. Remaud, C. Grégoire, F. Sébille, L. Vinet, Phys. Lett. B 180, 198 (1986).

    Google Scholar 

  43. B. Borderie, M.F. Rivet, L. Tassan-Got, Ann. Phys. (Paris) 15, 287 (1990).

    Google Scholar 

  44. H.M. Xu, W.G. Lynch, P. Danielewicz, G.F. Bertsch, Phys. Rev. Lett 65, 843 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Galichet.

Additional information

Communicated by A. Molinari

Received: 21 January 2003, Published online: 5 August 2003

PACS:

25.70.-z Low and intermediate energy heavy-ion reactions - 24.10.-i Nuclear reaction models and methods

N. Le Neindre: Permanent address: Institut de Physique Nuclaire, IN2P3-CNRS, F-91406 Orsay cedex, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galichet, E., Gulminelli, F., Guinet, D.C.R. et al. Charge density: A probe for the nuclear interaction in microscopic transport models. Eur. Phys. J. A 18, 75–86 (2003). https://doi.org/10.1140/epja/i2003-10047-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2003-10047-9

Keywords

Navigation