Skip to main content
Log in

Untersuchungen über die Aktivität des sympathischen Nervensystems und der Nebennierenrinde während akuter respiratorischer Acidose

Studies on the activity of the sympathetic nervous system and the adrenal cland cortex during acute respiratory acidosis

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The impact of experimentally induced acute respiratory acidosis on the activity of the sympathetic nervous system was studied in young healthy subjects. — Acute respiratory acidosis produces a significant increase in the concentration of plasma free fatty acids and in urinary excretion of catecholamines in healthy subjects. These results support the hypothesis that acute respiratory acidosis causes an increase in the activity of the sympathetic nervous system. No enhanced liberation of adrenal steroids was observed during acute hypercapnia.

Zusammenfassung

Eine experimentell induzierte akute, respiratorische Acidose wird von gesunden Versuchspersonen mit einem signifikanten Anstieg der freien Fettsäuren im Plasma und einer Zunahme der Katecholaminausscheidung im Harn beantwortet.

Diese Befunde sprechen dafür, daß eine akute respiratorische Acidose beim Gesunden zu einer nicht unbeträchtlichen Aktivierung des sympathischen Nervensystems führt.

Eine vermehrte Freisetzung von Nebennierenrindensteroiden während akuter Hyperkapnie war nicht nachweisbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Carlson, A., Pernow, B.: Studies on blood lipids during exercise. II. The arterial plasma free fatty acid concentration during and after exercise and its regulation. J. Lab. clin. Med.58, 673 (1961).

    PubMed  Google Scholar 

  • Correll, J. W.: Adipose tissue: Ability to respond to nerve stimulation in vitro. Science140, 387 (1963).

    PubMed  Google Scholar 

  • Dengler, H. J.: Zur Methodik der Katecholaminbestimmung beim Phaeochromozytom. Ergebn. Labor.-Med.3, 55 (1967).

    Google Scholar 

  • Dole, V. P.: A relation between non esterified fatty acids in plasma and the metabolism of glucose. J. clin. Invest.35, 150 (1956).

    PubMed  Google Scholar 

  • —— Meinertz, H.: Microdetermination of long-chain fatty acids in plasma and tissues. J. biol. Chem.235, 2595 (1960).

    PubMed  Google Scholar 

  • Euler, U. S. v., Floding, I.: Fluorimetric estimation of noradrenaline and adrenaline in urine. Acta physiol. scand.33, Suppl. 118, 57 (1955).

    PubMed  Google Scholar 

  • —— —— A fluorimetric micromethod for differential estimation of adrenaline and noradrenaline. Acta physiol. scand.33, Suppl. 118, 45 (1955).

    PubMed  Google Scholar 

  • Friedberg, S. J., Harlan, W. R., Trout, D. L., Estes, E. H.: The effect of exercise on the concentration and turnover of plasma nonesterified fatty acids. J. clin. Invest.39, 215 (1960).

    PubMed  Google Scholar 

  • Geisler, L.: Experimentelle Hyperkapnie. Untersuchungen am Menschen. Habil.-Schr. Gießen (1969).

  • Gordon, R. S., Cherkes, A.: Unesterified fatty acid in human blood plasma. J. clin. Invest.35, 206 (1956).

    PubMed  Google Scholar 

  • Hafkenschiel, J. H., Friedland, C. K.: Physiology of cerebral circulation in essential hypertension: effects of inhalation of 5 per cent carbon dioxid-oxygen mixtures on cerebral hemodynamics and oxygen metabolism. J. Pharmacol.106, 391 (1952).

    Google Scholar 

  • Hansen, D. B., Sultzer, M. R., Freygang, W. H., Sokoloff, L.: Effects of low O2 and high CO2 concentrations in inspired air on local cerebral circulation. Fed. Proc.16, 54 (1957).

    Google Scholar 

  • Havel, R. J., Goldfien, A.: The role of the sympathetic nervous system in the metabolism of free fatty acids. J. Lipid. Res.1, 102 (1959).

    Google Scholar 

  • Honig, C., Tenney, S. M.: Determinants of circulatory response to hypoxia and hypercapnia. Amer. Heart J.53, 687 (1957).

    PubMed  Google Scholar 

  • Jäger, L.: Untersuchungen zur Atemregulation bei Asthma bronchiale. Respiration25, 216 (1968).

    PubMed  Google Scholar 

  • Klensch, H.: Blut-Katecholamine und -Fettsäuren beim Streß durch Rauchen und körperliche Arbeit. Z. Kreisl.-Forsch.55, 1035 (1966).

    Google Scholar 

  • Köhler, E., Wirth, K.: Einfluß der extrazellulären Wasserstoffionenkonzentration auf die positiv inotrope Wirkung von Pharmaka. Naunyn-Schmiedebergs Arch. Pharmak.266, 372 (1970).

    Google Scholar 

  • McElroy, W. T., Spitzer, H.: Mobilization of free fatty acids in dogs during respiratory acidosis. J. appl. Physiol.339, 16 (1961).

    Google Scholar 

  • Nahas, G. G., Cavert, H. M.: Cardiac depressant effect of CO2 and its reversal. Amer. J. Physiol.190, 483 (1957).

    PubMed  Google Scholar 

  • Nahas, G. G., Ligou, J. C., Mehlmann, B.: Effect of pH changes on O2 uptake and plasma catecholamine levels in the dog. Amer. J. Physiol.198, 60 (1960).

    PubMed  Google Scholar 

  • Paoletti, R., Smith, R. L., Maickel, R. P., Brodie, B. B.: Identification and physiological role of norephinephrine in adipose tissue. Biochem. biophys. Res. Commun.5, 424 (1961).

    Google Scholar 

  • Price, H. L.: Effects of carbon dioxide on the cardiovascular system. Anesthesiology21, 652 (1960).

    PubMed  Google Scholar 

  • Schäfer, K. D., Klein, H., Zink, K. H.: Experimentelle Untersuchungen über den Zusammenhang von Mark und Rinde der Nebenniere unter langdauernder CO2-Einwirkung. Klin. Wschr.28, 179 (1950).

    Google Scholar 

  • Schaefer, K. E.: Respiratory pattern and respiratory response to CO2. J. appl. Physiol.13, 1, 1 (1958).

    PubMed  Google Scholar 

  • —— King, C. T. G., Mego, J. L., Williams, E. E.: Effect of narcotic level of CO2 on adrenal cortical activity and carbohydrate metabolism. Amer. J. Physiol.183, 53 (1955).

    PubMed  Google Scholar 

  • Sechzer, P. H., Egbert, L. D., Linde, H. W., Cooper, D. Y., Dripps, R. D., Price, H. L.: Effect of CO2 inhalation on the arterial pressure, ECG, and plasma catecholamines and 17-OH corticosteroids in normal man. J. appl. Physiol.15, 454 (1960).

    PubMed  Google Scholar 

  • Tenney, S. M.: Mechanism of hypertension during diffusion respiration. Anesthesiology17, 768 (1956).

    PubMed  Google Scholar 

  • —— The effect of carbon dioxide on neurohumoral and endocrine mechanisms. Anesthesiology21, 674 (1960).

    PubMed  Google Scholar 

  • Trout, D. L., Estes, H. Jr., Friedberg, S. J.: Titration of free fatty acids of plasma: a study of current methods and a new modification. J. Lipid. Res.1, 199 (1960).

    PubMed  Google Scholar 

  • Westermann, E.: Die Lipolyse und ihre pharmakologische Beeinflußbarkeit. In: Fette in der Medizin, S. 8–13. Erlangen: 1965.

  • —— Sympathicus und Fettstoffwechsel. Acta neuroveg. (Wien)30, 19 (1967).

    Google Scholar 

  • -- Stock, K.: Stimulierung der Lipolyse durch Hypophysenhormone. In: Fette in der Medizin, S. 2. Erlangen 1967.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geisler, L., Rost, H.D. & Dengler, H.J. Untersuchungen über die Aktivität des sympathischen Nervensystems und der Nebennierenrinde während akuter respiratorischer Acidose. Klin Wochenschr 49, 87–91 (1971). https://doi.org/10.1007/BF01497305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01497305

Navigation