Skip to main content
Log in

Persistent protoporphyrinemia in hereditary porphobilinogen synthase (δ-aminolevulinic acid dehydrase) deficiency under low lead exposure

Persistierende Protoporphyrinämie bei hereditärem Porphobilinogen-Synthase-(δ-Aminolävulinsäure-Dehydrase)-Mangel unter geringgradiger Blei-Exposition

A new molecular basis for the pathogenesis of lead intoxication

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

For several years, a 4–12-fold increase of the upper normal limit in erythrocyte protoporphyrin concentrations persisted in two men 34 and 39 years of age who were chronically exposed to lead. We are dealing with a zinc protoporphyrinemia in both cases, without lead intoxication or anemia. The 34-year-old had been a regular blood donor for 10 years and had already been treated for iron deficiency several times. Hemoglobin, red cell counts, hematocrit, and iron were at the lower normal limit. The activity of porphobilinogen synthase (PBG-S), uroporphyrinogen-synthase and -decarboxylase as well as urinary porphyrin precursors and porphyrin excretion were normal. Protoporphyrinemia was said to be due to a prelatent/latent iron deficiency.

In the 39-year-old, the activity of PBG-S was lowered to 388 µmol/l·h, as compared to the mean of controls (1,190±210,x±SD,n=50), in connection with a slightly elevated excretion of δ-aminolevulinic acid and coproporphyrin in the urine and a high-normal blood lead level. In his family there was no history of either a protoporphyrinemia or a hematological disturbance. Six of eight family members in three generations showed a diminished activity of PBG-S: 600±160,P<0.001 compared to controls. These family members are heterozygous with regard to the PBG-S deficiency; they are clinically unobtrusive in comparison to homozygotes with an acute prophyria syndrome. Activation by zinc and reactivation by dithiothreitol were normal in contrast to PBG-S from patients with lead intoxication. The cause of biochemical symptoms of subclinical lead intoxication developed by the propositus is probably due to the hereditary PBG-S deficiency which sensitizes him to low-level lead exposure. The determination of red cell PBG-S activity can be recommended as a test detecting heterozygotes.

The hereditary PBG-S deficiency is recognized as a new molecular basis for the pathogenesis of lead intoxication.

Zusammenfassung

Bei zwei Blei-exponierten Männern im Alter von 34 und 39 Jahren persistierte eine erhöhte Konzentration des Erythrozyten-Protoporphyrins um das Vier- bis Zwölffache der oberen Normgrenze über mehrere Jahre. Es handelt sich um eine Zink-Protoporphyrinämie, ohne daß eine Bleiintoxikation oder Anämie vorlag. Der 34jährige hatte sich über zehn Jahre regelmäßig als Blutspender zur Verfügung gestellt und war mehrfach schon wegen Eisenmangel behandelt worden. Hämoglobin, Erythrozytenzahl, Hämatokrit und Eisen lagen an der unteren Normgrenze; die Aktivitäten der Porphobilinogen-Synthase (PBG-S), Uroporphyrinogen-Synthase und -Decarboxylase in Erythrozyten sowie die Porphyrinvorläufer- und Porphyrinausscheidung im Urin war normal. Die Protoporphyrinämie wurde auf einen prälatenten/latenten Eisenmangel zurückgeführt.

Bei dem 39jährigen hingegen war die Aktivität der PBG-S auf 388 µmol/l·h gegenüber dem Mittelwert der Kontrollen (1 190±210,x±SD,n=50) herabgesetzt, begleitet von einer geringgradig erhöhten Ausscheidung von δ-Aminolävulinsäure und Koproporphyrin im Urin und einer hochnormalen Bleikonzentration im Blut. Bei seinen Familienangehörigen fand sich weder eine Protoporphyrinämie noch eine hämatologische Störung. Sechs von acht Familienmitgliedern in drei Generationen wiesen eine erniedrigte Aktivität der PBG-S auf: 600±160;p<0,001 verglichen zu Kontrollen. Diese Familienmitglieder sind heterozygot in bezug auf den PBG-S-Mangel; sie sind klinisch unauffällig im Vergleich zu Homozygoten mit einem akuten Porphyrie-Syndrom. Die Zink-Aktivierung des Enzyms und seine Reaktivierung durch Dithiothreitol waren normal im Gegensatz zur PBG-S von Patienten mit Bleivergiftung. Die Ursache der biochemischen Symptome einer subklinischen Bleiintoxikation bei dem Propositus wird in dem hereditären PBG-S-Defekt gesehen, der ihn für eine niedrige Bleiexposition sensibilisiert. Die Bestimmung der PBG-S wird zur Entdeckung Heterozygoter empfohlen.

Als neue molekulare Basis für die Pathogenese der Bleiintoxikation wird der hereditäre PBG-S-Mangel erkannt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson KE, Sassa S, Peterson CM, Kappas A (1977) Increased erythrocyte uroporphyrinogen-I-synthase, δ-aminolevulinic acid dehydratase and protoporphyrin in hemolytic anemias. Am J Med 63:359–364

    Google Scholar 

  2. Anderson PM, Reddy RM, Anderson KE, Desnick RJ (1981) Characterization of the porphobilinogen deaminase deficiency in acute intermittent porphyria. Immunologic evidence for heterogeneity of the genetic defect. J Clin Invest 68:1–12

    Google Scholar 

  3. Bartholomé K (1980) Die molekulare Basis der Heterogenität der Phenylketonurie. Naturwissenschaften 67:495–498

    Google Scholar 

  4. Berk PD, Tschudy DP, Shepley LA, Waggoner JG (1970) Hematologic and biochemical studies in a case of lead posoning. Am J Med 48:139–144

    Google Scholar 

  5. Berlin A, Schaller KH (1974) European standardized method for the determination of δ-aminolevulinic acid dehydratase activity in blood. J Clin Chem Clin Biochem 12:389–390

    Google Scholar 

  6. Bevan DR, Bodlaender P, Shemin D (1980) Mechanism of porphobilinogen synthase. Requirement of Zn2+ for enzyme activity. J Biol Chem 255:2030–2035

    Google Scholar 

  7. Bird TD, Hamernyik P, Nutter JY, Labbé RF (1979) Inherited deficiency of δ-aminolevulinic acid dehydratase. Am J Hum Gen 31:662–668

    Google Scholar 

  8. Brandt A, Doss M (1981) Hereditary porphobilinogen synthase deficiency in human associated with acute hepatic porphyria. Human Genetics 58:194–197

    Google Scholar 

  9. Doss M (1974) Porphyrins and porphyrin precursors. In: Curtius HCh, Roth M (eds) Clinical biochemistry. De Gruyter, Berlin New York, pp 1325–1371

    Google Scholar 

  10. Doss M (1978) Relationships between acute hepatic porphyrias due to genetic variability of primary enzyme defects and limiting function of uroporphyrinogen synthase. Int J Biochem 9:911–916

    Google Scholar 

  11. Doss M (1979) Haematological disturbances of porphyrin metabolism. In: Gross R, Hellriegel KP (eds) Strategies in clinical haematology. Springer, Berlin Heidelberg New York, pp 97–109

    Google Scholar 

  12. Doss M, Müller WA (1982) Acute lead poisoning with underlying inherited porphobilinogen synthase deficiency. Blut (in press)

  13. Doss M, Tiepermann R von (1977) Clinical biochemistry of acute lead poisoning. In: Brown SS (ed) Proc Symp on Clin Chemistry and Chem Toxicology of Toxic Metals. Elsevier/North Holland Amsterdam, pp 183–186

  14. Doss M, Tiepermann R von, Schneider J (1980) Acute hepatic porphyria syndrome with porphobilinogen synthase defect. Int J Biochem 12:823–826

    Google Scholar 

  15. Doss M, Tiepermann R von, Schneider J, Schmid H (1979) New type of hepatic porphyria with porphobilinogen synthase defect and intermittent acute clinical manifestation. Klin Wochenschr 57:1123–1127

    Google Scholar 

  16. Goldberg A, Meredith PA, Miller S, Moore MR, Thompson GG (1978) Hepatic drug metabolism and haem biosynthesis in lead-poisoned rats. Br J Pharmac 62:529–536

    Google Scholar 

  17. Granick JL, Sassa S, Granick S, Levere RD, Kappas A (1973) Studies in lead poisoning. II. Correlation between the ratio of activated to inactivated δ-aminolevulinic acid dehydratase of whole blood and the blood lead level. Biochem Med 8:149–159

    Google Scholar 

  18. Granick S, Sassa S, Granick JL, Levere RD, Kappas A (1972) Assays for porphyrins, δ-aminolevulinic acid dehydratase, and porphyrinogen synthase in microliter samples of whole blood. Applications to metabolic defects involving the heme pathway. Proc Natl Acad Sci USA 69:2381–2385

    Google Scholar 

  19. Heilmeyer L (1964) Störungen der Bluthämsynthese. Thieme, Stuttgart

    Google Scholar 

  20. Heinrich HC (1978) Ätiologie, Diagnostik und Dimensionierung der Therapie des Eisenmangels. Blut, Suppl. 21:35–94

    Google Scholar 

  21. Krasner N, Moore MR, Thompson GG, McIntosh W, Goldberg A (1974) Depression of erythrocyte δ-aminolevulinic acid dehydratase activity in alcoholics. Clin Sci Mol Med 46:415–418

    Google Scholar 

  22. Kusell M, Lake L, Andersson M, Gerschenson LE (1978) Cellular and molecular toxicology of lead. II. Effect of lead on δ-aminolevulinic acid synthetase of cultured cells. J Toxicol Environ Health 4:515–525

    Google Scholar 

  23. Kushner JP, Lee GR, Wintrobe MM, Cartwright GE (1971) Idiopathic refractory sideroblastic anemia. Clinical and laboratory investigation of 17 patients and review of the literature. Medicine 50:139–159

    Google Scholar 

  24. Labbé RF, Nielson L (1976) Clinical-biochemical interpretations of erythrocyte protoporphyrin. Ferrochelatase-pyridoxal phosphate studies. In: Doss M (ed) Porphyrins in human diseases. Karger, Basel, pp 141–147

    Google Scholar 

  25. Lamola AA, Yamane T (1974) Zinc protoporphyrin in the erythrocytes of patients with lead intoxication and iron deficiency anemia. Science 186:936–938

    Google Scholar 

  26. Lamon JM, Frykholm BC, Tschudy DP (1979) Hematin administration to an adult with lead intoxication. Blood 53:1007–1011

    Google Scholar 

  27. Lindblad B, Lindstedt S, Steen G (1977) On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci USA 74:4641–4645

    Google Scholar 

  28. Maxwell JD, Meyer UA (1976) Effect of lead on hepatic δ-aminolevulinic acid synthetase activity in the rat: A model for drug sensitivity in intermittent acute porphyria. Eur J Clin Invest 6:373–379

    Google Scholar 

  29. McColl KEL, Thompson GG, Moore MR, Goldberg A (1980) Acute ethanol ingestion and haem biosynthesis in healthy subjects. Eur J Clin Invest 10:107–112

    Google Scholar 

  30. Meredith PA, Moore MR, Goldberg A (1979) Erythrocyte δ-aminolaevulinic acid dehydratase activity and blood protoporphyrin concentrations as indices of lead exposure and altered haem biosynthesis. Clin Sci 56:61–69

    Google Scholar 

  31. Sassa S, Granick S, Kappas A (1975) Effect of lead and genetic factors on heme biosynthesis in the human red cell. Ann NY Acad Sci 244:419–440

    Google Scholar 

  32. Secchi GG, Erba L, Cambiaghi G (1974) Delta-aminolevulinic acid dehydratase activity of erythrocytes and liver tissue in man. Relationship to lead exposure. Arch Environ Health 28:130–132

    Google Scholar 

  33. Suketa Y, Aoki M, Yamamoto T (1975) Changes in hepaticδ-aminolevulinic acid in lead-intoxicated rats. J Toxicol Environ Health 1:127–132

    Google Scholar 

  34. Schlegel H, Kufner G (1979) Long-term observation of biochemical effects of lead in human experiments. J Clin Chem Clin Biochem 17:225–233

    Google Scholar 

  35. Schwartz S, Stephenson B, Ruth G (1978) Hereditary bovine protoporphyria, a “total body” deficiency of ferrochelatase: Some basic distinctions from hypochromic anemias. In: Doss M (ed) Diagnosis and therapy of porphyrias and lead intoxication. Springer, Berlin Heidelberg New York, pp 262–265

    Google Scholar 

  36. Stoeppler M, Brandt K, Rains TC (1978) Contributions to automated trace analysis. Part II. Rapid method for the automated determination of lead in whole blood by electrothermal atomic-absorption spectrophotometry. Analyst 103:714–722

    Google Scholar 

  37. Tiepermann R von, Doss M (1978) Uroporphyrinogen-Decarboxylase in Erythrozyten. Untersuchungen zum primären genetischen Enzymdefekt bei chronischer hepatischer Porphyrie. J Clin Chem Clin Biochem 16:513–517

    Google Scholar 

  38. Tschudy DP, Hess RA, Frykholm BC (1981) Inhibition ofδ-aminolevulinic acid dehydrase by 4,6-dioxoheptanoic acid. J Biol Chem. 256:9915–9923

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study has been supportec by the Deutsche Forschungsgemeinschaft (German Research Association, Grant Do 134/10), Bonn-Bad Godesberg

This work is dedicated to Prof. Dr. Rudolf Gross on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doss, M., Becker, U., Sixel, F. et al. Persistent protoporphyrinemia in hereditary porphobilinogen synthase (δ-aminolevulinic acid dehydrase) deficiency under low lead exposure. Klin Wochenschr 60, 599–606 (1982). https://doi.org/10.1007/BF01711435

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01711435

Key words

Schlüsselwörter

Navigation