Skip to main content
Log in

Transport of inorganic and organic substances in the renal proximal tubule

Transport von anorganischen und organischen Substanzen im proximalen Nierentubulus

  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The transport through the epithelial cell layer of the renal proximal tubule proceeds in principle by passive paracellular and active transcellular transport. The active transcellular transport is mostly secondary active. This means it proceeds coupled with the flux of Na+ ions, where-by the transcellular gradient of sodium, created by the (Na++K+)-ATPase, located at the contraluminal cell side, provides the main driving force. Once in the cell the substances leave the other cell side by a Na+-independent, but carrier-mediated transport system. Using microperfusion and electrophysiological techniques as well as brush border membrane vesicle preparation the Na+-H+ countertransport and the Na+-cotransport of amino acids, phosphate, sulfate, thiosulfate, bile acids, aliphatic-aromatic monocarboxylic acids (lactate) and dicarboxylic acids was studied. Special emphasis will be given to the bidirectional transport of thiosulfate as well as to the specificity of the monocarboxylic acid and dicarboxylic acid transport system.

Zusammenfassung

Resorption bzw. Sekretion im proximalen Nierentubulus läuft einmal passiv auf dem parazellulären Weg, d.i. zwischen den Zellen hindurch, ab, zum anderen aktiv, transzellulär, durch die Zellen hindurch. Der transzelluläre aktive Transport ist in der Regel sekundär aktiv. Er verläuft gekoppelt an den Fluß von Na+-Ionen, wobei ein transzellulärer Gradient von Na+-Ionen, der seinerseits durch die kontraluminal gelegene (Na+-K+)-ATPase geschaffen wird, die Triebkraft liefert. Einmal in der Zelle, verlassen die Substanzen die kontraluminale Zellseite vermittels Karrier, die Na+-unabhängig sind. Mit Hilfe von Mikroperfusions- und elektrophysiologischen Techniken sowie mit Hilfe von Bürstensaumvesikeln wurde der Na+-Kotransport von Aminosäuren, Phosphat, Sulfat, Thiosulfat, Gallensäuren, aliphatischen und aromatischen Monokarboxylsäuren (Laktat) sowie der von Dikarboxylsäuren untersucht. Besonderes Augenmerk wurde dem bidirektionalen Transport von Thiosulfat sowie der Spezifität des Mono- und Dikarboxylsäure-Transportsystems gewidmet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barac-Nieto M, Murer H, Kinne R (1980) Lactate-sodium co-transport in rat renal brush border membranes. Am J Physiol 239:F496-F506

    Google Scholar 

  2. Barrett PQ, Gertner JM, Rasmussen H (1980) Effect of dietary phosphate on transport properties of pig renal microvillus vesicles. Am J Physiol 239:F352-F359

    Google Scholar 

  3. Boumendil-Podevin EF, Podevin RA (1981) Nicotinic acid transport by brush border membrane vesicles from rabbit kidney. Am J Physiol 240:F185-F191

    Google Scholar 

  4. Brazy PC, Dennis VW (1981) Sulfate transport in rabbit proximal convoluted tubules: presence of anion exchange. Am J Physiol 241:F300-F307

    Google Scholar 

  5. Burckhardt B-Ch, Frömter E (1980) Bicarbonate transport across the peritubular membrane of rat kidney proximal tubule. In: Schulz I, Sachs G, Forte JG, Ullrich KJ (eds) Hydrogen ion transport in epithelia, vol 4. Elsevier/North Holland, Amsterdam, pp 277–285

    Google Scholar 

  6. Burckhardt G, Stern H, Murer H (1981) The influence of pH on phosphate transport into rat renal brush border membrane vesicles. Pflügers Arch 390:191–197

    Google Scholar 

  7. Burnham C, Muenzesheimer T, Rabon E, Sachs G (1981) The Na+:H+ antiporter of renal brush border vesicles. Fed Proc 40:462

    Google Scholar 

  8. Garcia ML, Benavides J, Valdivieso F (1980) Ketone body transport in renal brush border membrane vesicles. Biochim Biophys Acta 600:922–930

    Google Scholar 

  9. Greger R, Lang F, Silbernagl S (1981) Renal transport of organic substances. Springer, Berlin Heidelberg New York

    Google Scholar 

  10. Hine J (1966) Reaktivität und Mechanismus in der organischen Chemie, Kap 4. Thieme, Stuttgart, S 82–105

    Google Scholar 

  11. Hruska KA, Hammerman MR (1981) Parathyroid hormone inhibition of phosphate transport in renal brush border vesicles from phosphatedepleted dogs. Biochim Biophys Acta 645:351–356

    Google Scholar 

  12. Kinne-Saffran E, Beauwens R, Kinne R (1981) An ATP-driven proton pump in brush border membranes from rat renal cortex. J Membrane Biol 62:7–17

    Google Scholar 

  13. Kinsella JL, Aronson PS (1980) Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol 238:F461-F469

    Google Scholar 

  14. Kippen I, Hirayama B, Klinenberg JR, Wright EM (1979) Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border. Proc Natl Acad Sci 76:3397–3400

    Google Scholar 

  15. Lücke H, Stange G, Murer H (1979) Sulphate-ion/sodium-ion cotransport by brush border membrane vesicles isolated from rat kidney cortex. Biochem J 182:223–229

    Google Scholar 

  16. Murer H, Leopolder A, Kinne R, Burckhardt G (1980) Recent observations on the proximal tubular transport of acidic and basic amino acids by rat renal proximal tubular brush border vesicles. Int J Biochem 12:223–228

    Google Scholar 

  17. Nord E, Wright S, Wright E, Kippen I (1981) Pyruvate transport by rabbit renal brush border membranes. Fed Proc 40:Abstr 801

  18. Sacktor B, Rosenbloom IL, Liang CT, Cheng L (1981) Sodium gradient- and sodium plus potassium gradient-dependent L-glutamate uptake in renal basolateral membrane vesicles. J Membrane Biol 60:63–71

    Google Scholar 

  19. Sacktor B, Cheng L (1981) Sodium gradient dependent phosphate transport in renal brush border membrane vesicles. Effect of an intravesicular > extravesicular proton gradient. J Biol Chem 256:8080–8084

    Google Scholar 

  20. Samarzija I, Molnar V, Frömter E (1981) The stoichiometry of Na+-coupled anion absorption across the brush border membrane of rat proximal tubule. Advances in physiological sciences. In: Takács L (ed) Kidney and body fluids, vol 11, Pergamon Press, Oxford, pp 419–423

    Google Scholar 

  21. Samarzija I, Frömter E (1982) Electrophysiological analysis of rat renal sugar and amino acid transport. III. Neutral amino acids. Pflügers Arch 393:199–209

    Google Scholar 

  22. Schneider EG, Sacktor B (1980) Sodium gradient dependent L-glutamate transport in renal brush border membrane vesicles. Effect of an intracellular > extracellular potassium gradient. J Biol Chem 255:7645–7649

    Google Scholar 

  23. Stoll R, Kinne R, Murer H (1979) Effect of dietary phosphate intake on phosphate transport by isolated rat renal brushborder vesicles. Biochem J 180:465–470

    Google Scholar 

  24. Stoll R, Kinne R, Murer H, Fleisch H, Bonjour J-P (1979) Phosphate transport by rat renal brush border membrane vesicles: Influence of dietary phosphate, thyroparathyroidectomy and 1.25-dihydroxy vitamin D3. Pflügers Arch 380:47–52

    Google Scholar 

  25. Ullrich KJ, Frömter E (1978) Active and passive transtubular transport in the proximal convolution. Procedings of VIIth International Congress of Nephrology, Montreal, 1978. Karger, Basel, pp 147–154

  26. Ullrich KJ, Rumrich G, Klöss S (1978) Phosphate transport in the proximal convolution of the rat kidney. III. Effect of extracellular and intracellular pH. Pflügers Arch 377:33–42

    Google Scholar 

  27. Ullrich KJ, Rumrich G, Klöss S (1980) Active sulfate reabsorption in the proximal convolution of the rat kidney. Specificity, Na+ and HCO 3 -dependence. Pflügers Arch 383:159–163

    Google Scholar 

  28. Ullrich KJ, Rumrich G, Klöss S (1980) Bidirectional active transport of thiosulfate in the proximal convolution of the rat kidney. Pflügers Arch 387:127–132

    Google Scholar 

  29. Ullrich KJ, Rumrich G, Klöss S (1980) Monocarboxylic acid (D-lactate) and dicarboxylic acid (malonate) transport in the proximal convolution of the rat kidney. Pflügers Arch 384:R8

    Google Scholar 

  30. Ullrich KJ, Rumrich G, Klöss S (1981) Specificity of the Na+-dependent aliphatic-aromatic monocarboxylic transport system in the proximal tubule of the rat kidney. Pflügers Arch 391:R22

    Google Scholar 

  31. Wilson FA, Burckhardt G, Murer H, Rumrich G, Ullrich KJ (1981) Sodium-coupled taurocholate transport in the proximal convolution of the rat kidney in vivo and in vitro. J Clin Invest 67:1141–1150

    Google Scholar 

  32. Wright SH, Kippen I, Klinenberg JR, Wright EM (1980) Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders. J Membrane Biol 57:73–82

    Google Scholar 

  33. Wright SH, Krasne S, Kippen I, Wright EM (1981) Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects of fluorescence of a potential sensitive cyanine dye. Biochim Biophys Acta 640:767–778

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, K.J., Rumrich, G. & Klöss, S. Transport of inorganic and organic substances in the renal proximal tubule. Klin Wochenschr 60, 1165–1172 (1982). https://doi.org/10.1007/BF01716718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01716718

Key words

Schlüsselwörter

Navigation