Skip to main content
Log in

Die Rolle von Interleukin-2 bei der Aktivierung von zytotoxischen T-Lymphozyten

The role of Interleukin-2 during the activation of cytotoxic T-lymphocytes

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

This review describes our present information on the interactions of cellular and humoral components involved in the induction of cytotoxic T-lymphocyte (CTL) responses. Since soluble, hormone-like growth factors (interleukins) are intimately involved in such reactions, the discussion will focus on the role of such mediators, in particular on the functional role of Interleukin-2 (1–2).

Il-2 is a soluble, non-antigen-specific glycoprotein with a molecular weight of 15,000 daltons (human Il-2) or 30,000 daltons (murine Il-2). Il-2 is derived from T-helper-lymphocytes, that bear in the mouse the Lyt 1-cell surface marker and in the human the OKT4 phenotype. In order to produce Il-2, T-helperlymphocytes require two distinct signals that are delivered by antigen-presenting cells (macrophages): Signal 1 is the antigen as presented by macrophages, signal 2 represents the soluble macrophage product, Interleukin-1 (Il-1). Il-2 in turn controls the antigen-independent clonal expansion of all T cells that bear receptors for Il-2. The most prominent target cells for Il-2 are the CTL precursors, known to be in the mouse Lyt 123*-positive or OKT8-positive in humans. “Resting”, naive T cells do not express Il-2-receptors. However, following antigen binding of antigen (antigen-receptor interaction), the respective clones will express the Il-2 receptor. Il-2 driven proliferation of the “activated” clones is completely dependent on the bio-availability of Il-2.

Our present knowledge on the function of Il-2, and the possibilities to manipulate experimentally either the Il-2 production by T helper cells, or the Il-2 responsiveness of CTL-precursors, point to new strategies both in diagnostic and in therapy of immune defects that can be the result, in vivo, of either a lack or a surplus of Il-2.

Zusammenfassung

Der vorliegende Artikel stellt eine Übersicht dar Über die derzeitigen Vorstellungen des Zusammenwirkens zellulärer und humoraler Faktoren, die zu T-Zell-vermittelten zytotoxischen Immunreaktionen führen. Da im Ablauf derartiger Immunreaktionen hormonähnliche Wachstumsfaktoren (interleukine) eine entscheidende Rolle spielen, liegt der Schwerpunkt der Diskussion auf der Beschreibung dieser Mediatoren; insbesondere wird die Bedeutung von Interleukin-2 (Il-2) diskutiert.

Il-2 ist ein lösliches, nicht antigenspezifisches Glykoprotein mit einem Molekulargewicht von 15 000 Dalton (humanes Il-2) bzw. 30 000 Dalton (murines Il-2). Es wird in vitro von T-Helfer-Lymphozyten sezerniert, die in der Maus den Lyt 1 Oberflächen-Phänotyp aufweisen und beim Menschen OKT4-positiv sind. Die Aktivierung der T-Helfer-Lymphozyten zur Il-2-Produktion erfordert zwei Kommunikationssignale, die durch Antigen-präsentierende Zellen (Makrophagen) bereitgestellt werden: Signal 1 ist das durch Makrophagen präsentierte Antigen; Signal 2 stellt das lösliche Makrophagen-Produkt Interleukin-1 (Il-1) dar.

Dic biologische Wirkung von Il-2 besteht in der Antigen-unabhängigen klonalen Expansion all jener T-Zellen, die einen Rezeptor für Il-2 besitzen. Solche Zellen sind vor allem die Vorläuferzellen von zytotoxischen T-Lymphozyten (ZTL-V), die in der Maus den Lyt 123*-und beim Menschen den OKT8-positiven Oberflächen-Phänotyp aufweisen. „Ruhende“, naive T-Zellen exprimieren keinen Rezeptor für Il-2. Erst nach Antigen-Bindung (Rezeptor-Antigen Interaktion) entwickeln T-Zellen einen Il-2-Rezeptor; sie sind nun empfindlich für das durch Interleukin-2 vermittelte Mitogen-Signal. Die danach einsetzende Proliferation der „aktivierten“ T-Zell-Klone ist nur noch abhängig von der Bioverfügbarkeit von Il-2. Die derzeitigen Kenntnisse über die Eigenschaften von Il-2 und die experimentelle Manipulation der Il-2-Produktion durch T-Helfer-Zellen bzw. der Il-2-Empfindlichkeit versprechen neue Ansätze bei der Diagnostik und möglicherweise bei der Therapie von Immundefekten, die in vivo sowohl durch einen Mangel als auch durch einen Überschuß an Il-2 verursacht sein können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Aarden LA (1979) Revised nomenclature for antigen-non-specific T cell proliferation and helper factors. J Immunol 123:2928–2929

    PubMed  Google Scholar 

  2. Altman A, Cohen IR (1975) Cell-free media of mixed lymphocyte cultures augmenting sensitization in vitro of mouse T lymphocytes against allogeneic fibroblasts. Eur J Immunol 5:437–444

    Google Scholar 

  3. Andersson J, Grönvick KO, Larsson EL, Coutinho A (1979) Studies on T lymphocyte activation. I. Requirements for the mitogen-dependent production of T cell growth factors. Eur J Immunol 9:581–587

    PubMed  Google Scholar 

  4. Bach FH, Segall M, Stouber-Zier K, Sondel M, Alter BJ (1973) Cell-mediated immunity: Separation of cells involved in recognitive and destructive phases. Science 180:403–406

    Google Scholar 

  5. Bonnard GD, Yasaka D, Jacobson D (1979) Ligand-activated T cell growth factor induced proliferation: Absorption of T cell growth factor by activated T cells. J Immunol 123:2704–2708

    Google Scholar 

  6. Biddison WE, Sharrow SO, Shearer GM (1981) T cell subpopulations required for the human cytotoxic T lymphocyte response to influenza virus: evidence for T cell help. J Immunol 127:487–491

    Google Scholar 

  7. Bunjes D, Hardt C, Röllinghoff M, Wagner H (1981) Cyclosporin A mediates immunosuppression of primary cytotoxic T cell responses by impairing the release of interleukin 1 and interleukin 2. Eur J Immunol 11:657–661

    Google Scholar 

  8. Bunjes D, Hardt C, Solbach W, Deusch K, Röllinghoff M, Wagner H (1982) Studies on the mechanism of action of cyclosporin A on the murine and human T cell response in vitro. In: Symposion on Cyclosporin A, Cambridge. Academic Press, New York (im Druck)

    Google Scholar 

  9. Cantor H, Simpson E (1975) Regulation of the immune response by subclasses of T lymphocytes. I. Interaction between prekiller T cells and regulatory T cells obtained from peripheral lymphoid tissues of mice. Eur J Immunol 5:330–336

    PubMed  Google Scholar 

  10. Cantor H, Boyse EA (1975) Functional subclasses of T lymphocytes bearing different Ly antigens. II. Co-operation between subclasses of Ly* cells in the generation of killer activity. J Exp Med 141:1390–1399

    Google Scholar 

  11. Claman HN, Chaperon EA, Triplett RF (1966) Thymus-marrow cell combinations. Synergism in antibody production. Proc Soc Exp Biol Med 122:1167–1171

    PubMed  Google Scholar 

  12. Coutinho A, Larsson EL, Grönvick KO, Andersson J (1979) Studies on T lymphocyte activation. II. The target cells for concanavalin-A-induced growth factors. Eur J Immunol 9:587–592

    Google Scholar 

  13. Dennert G (1980) Cloned lines of natural killer cells. Nature 287:47–49

    PubMed  Google Scholar 

  14. Dutton RW, Falkoffer R, Hirst JA, Hoffmann M, Kappler JW, Kettmann JR, Lesley JF, Vann D (1971) Is there evidence for a non-antigen specific diffusable chemical mediator from the thymus derived cell in the initiation of the immune response? Progr Immunol 1:355–387

    Google Scholar 

  15. Farrar JJ, Fuller-Farrar J, Simon PL, Hilfiker ML, Stadler BM, Farrar WL (1980) Thymoma production of T cell growth factor (Interleukin-2). J Immunol 125:2555–2558

    PubMed  Google Scholar 

  16. Finke JH, Orosz CG, Battisto JR (1977) Splenic T-killer cells can be generated by allogeneic thymic cells in conjunction with assisting factor. Nature 267:353–354

    PubMed  Google Scholar 

  17. Friedmann SM, Hunter SB, Irigoyen OH, Kung PC, Goldstein G, Chess L (1981) Functional analysis of human T cell subsets defined by monoclonal antibodies. VI. Collaborative T-T interactions in the generation of TNP-altered self-reactive cytotoxic T lymphocytes. J Immunol 126:1702–1705

    PubMed  Google Scholar 

  18. Gillis S, Baker PE, Ruscetti FW, Smith KA (1978a) Long-term culture of human antigen-specific cytotoxic T-cell lines. J Exp Med 148:1093–1098

    PubMed  Google Scholar 

  19. Gillis S, Ferm MM, Ou W, Smith KA (1978b) T cell growth factor: Parameters of production and a quantitative microassay for activity. J Immunol 120:2027–2032

    Google Scholar 

  20. Gillis S, Scheid M, Watson J (1980) Biochemical and biologic characterization of lymphocyte regulatory molecules. III. The isolation and phenotypic characterization of Interleukin-2 producing T cell lymphomas. J Immunol 125:2570–2578

    PubMed  Google Scholar 

  21. Gillis S, Watson J (1980) Biochemical and biological characterization of lymphocyte regulatory molecules. V. Identification of an Interleukin 2-producing human leukemia T cell line. J Exp Med 152:1709–1719

    PubMed  Google Scholar 

  22. Gillis S, Mizel SB (1981) T-cell lymphoma model for the analysis of interleukinl-mediated T-cell activation. Proc Natl Acad Sci USA 78:1133–1137

    PubMed  Google Scholar 

  23. Gillis S, Henney CS (1981) The biochemical and biological characterization of lymphocyte regulatory molecules. VI. Generation of a B cell hybridoma whose antibody product inhibits Interleukin 2 activity. J Immunol 126:1978–1984

    PubMed  Google Scholar 

  24. Glasebrook AL, Sarmiento M, Loken MR, Dialynas DP, Quintans J, Eisenberg L, Lutz CT, Wilde D, Fitch FW (1981) Murine T lymphocyte clones with distinct immunological functions. Immunol Rev 54:225–266

    Google Scholar 

  25. Gootenberg JE, Ruscetti FW, Mier JW, Gazdar A, Gallo RC (1981) Human cutaneous T cell lymphoma and leukemia cell lines produce and respond to T cell growth factor. J Exp Med 154:1403–1418

    PubMed  Google Scholar 

  26. Grönvick KO, Andersson J (1980) The role of T cell growth stimulating factors in T cell triggering. Immunol Rev 51:35–59

    PubMed  Google Scholar 

  27. Henney CS, Okada M, Gillis S (1980) The cellular and antigenic requirements for Il-2 production in vitro. Behring Inst Mitt 67:26–35

    Google Scholar 

  28. Kern DE, Gillis S, Okada M, Henney CS (1981) The role of Interleukin-2 (Il-2) in the differentiation of cytotoxic T cells: the effect of monoclonal anti Il-2 antibody and absorption with Il-2 dependent T cell lines. J Immunol 127:1323–1328

    PubMed  Google Scholar 

  29. Klaus GGB (1981) The effects of cyclosporin A on the immune system. Immunology Today 2:83–87

    Google Scholar 

  30. Kristensen F, Walker C, de Weck A (1981) Effects of Interleukin 2 on the cell cycle of murine thymocytes. Immunobiology 159:58

    Google Scholar 

  31. Kung PC, Goldstein G, Reinherz EL, Schlossman SF (1979) Monoclonal antibodies defining distinctive human T cell surface antigens. Science 206:347–349

    Google Scholar 

  32. Kuribayashi K, Gillis S, Kern D, Henney CS (1981) Murine NK cell cultures: Effect of interleukin-2 and interferon on cell growth and cytotoxic reactivity. J Immunol 126:2321–2327

    Google Scholar 

  33. Larsson EL, Coutinho A (1980) Mechanism of T cell activation. I. A screening of “step one” ligands. Eur J Immunol 10:93–99

    PubMed  Google Scholar 

  34. Larsson EL, Iscove NN, Coutinho A (1980a) Two distinct factors are required for the induction of T cell growth. Nature 283:664–666

    PubMed  Google Scholar 

  35. Larsson EL, Gullberg M, Ivars F, Holmberg D, Coutinho A (1980b) The cells producing and responding to TCGF. Behring Inst Mitt 67:12–17

    Google Scholar 

  36. Larsson EL (1981) Mechanism of T cell activation. II. Antigen- and lectin-dependent acquisition of responsiveness to TCGF is a nonmitogenic, active response of resting T cells. J Immunol 126:1323–1326

    Google Scholar 

  37. Lin YL, Askonas B (1981) Biological properties of an influenza A virus-specific killer T cell clone. Inhibition of virus replication in vivo and induction of delayed-type hypersensitivity reactions. J Exp Med 153:225–234

    Google Scholar 

  38. Maizel AL, Metha SR, Ford RJ, Lachman LB (1981a) Effect of Interleukin-1 on human thymocytes and purified human T cells. J Exp Med 153:470–475

    PubMed  Google Scholar 

  39. Maizel AL, Mehta RS, Hauft S, Franzini D, Lachman LB, Ford RJ (1981b) Human T lymphocyte/monocyte interaction in response to lectin: kinetics of entry into the S-phase. J Immunol 127:1058–1064

    Google Scholar 

  40. Mier JW, Gallo RC (1980) Purification and some characteristics of human T-cell growth factor from phytohemagglutinin-stimulated lymphocyte conditional media. Proc Natl Acad Sci USA 77:6134–6138

    PubMed  Google Scholar 

  41. Mitchell GF, Miller JFAP (1968) Cell to cell interactions in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med 128:821–837

    PubMed  Google Scholar 

  42. Mochizuki D, Watson J, Gillis S (1980) Biochemical and biological characterization of lymphocyte regulatory molecules. IV. Purification of interleukin 2 from a murine T cell lymphoma. J Immunol 125:2579–2583

    PubMed  Google Scholar 

  43. Möller G (Hrsg) (1978) Role of macrophages in the immune response. Immunol Rev 40

  44. Möller G (Hrsg) (1981) T cell clones. Immunol Rev 58

  45. Okada M, Henney CS (1980) The differentiation of cytotoxic T cells in vitro. II. Amplifying factor(s) produced in primary mixed lymphocyte cultures against K/D stimuli require the presence of Lyt 2* cells but not Lyt 1* cells. J Immunol 125:300–307

    PubMed  Google Scholar 

  46. Oppenheim JJ, Northoff H, Grenhill A, Mathieson J, Smith KA, Gillis S (1980) Properties of human monocyte derived lymphocyte activating factor (LAF) and lymphocyte derived mitogenic factor (LMF). In: Weck de (ed) Proceedings of the Second International Lymphokine Workshop. Academic Press, New York

    Google Scholar 

  47. Pawelec G, Rehbein A, Müller C, Sonneborn HH, Wernet P (1981) Human T lymphocytes grown in T-cell growth factor: functional attributes in MLC, CML, PLT and allogeneic suppression. Immunology 42:529–540

    PubMed  Google Scholar 

  48. Pfizenmaier K, Delzeit R, Röllinghoff M, Wagner H (1980) T-T cell interactions during in vitro cytotoxic T lymphocyte responses. III. Antigen-specific T helper cells release nonspecific mediator(s) able to help induction of H-2-restricted cytotoxic T lymphocyte responses across cell impermeable membranes. Eur J Immunol 10:577–582

    PubMed  Google Scholar 

  49. Pfizenmaier K (1981) Interleukin producing T cell hybridomas: A biological characterization of mediators controlling lymphocyte activation. In: Pick E (ed) Lymphokines, Vol 5. Academic Press, New York, pp 323–352

    Google Scholar 

  50. Plate JMD (1976) Soluble factors substitute for T-T-cell collaboration in generation of T-killer lymphocytes. Nature 260:329–331

    PubMed  Google Scholar 

  51. Poiesz BJ, Ruscetti FW, Mier JW, Woods AM, Gallo RC (1980) T cell lines established from human T-lymphocytic neoplasias by direct response to T-cell growth factor. Proc Natl Acad Sci USA 77:6815–6819

    PubMed  Google Scholar 

  52. Rabin H, Hopkins III FW, Ruscetti FW, Neubauer RH, Brown RL, Kawakami TG (1981) Spontaneous release of a factor with properties of T cell growth factor from a continuous line of primate tumor T cells. J Immunol 127:1852–1855

    PubMed  Google Scholar 

  53. Robb RJ, Munck A, Smith KA (1981) T cell growth factor receptors. Quantitation, specificity and biological relevance. J Exp Med 154:1455–1474

    PubMed  Google Scholar 

  54. Röllinghoff M, Pfizenmaier K, Solbach W, Wagner H (1980) MIS-locus coded determinants stimulate the release of Interleukin-2 activity from T lymphocytes. Behring Inst Mitt 67:36–40

    Google Scholar 

  55. Rosenthal AS (1980) Regulation of the immune response-role of the macrophage. N Engl J Med 303:1153–1156

    PubMed  Google Scholar 

  56. Ruscetti FW, Morgan DA, Gallo RC (1977) Functional and morphologic characterization of human T cells continuously grown in vitro. J Immunol 119:131–138

    PubMed  Google Scholar 

  57. Ryser JE, Cerottini JC, Brunner KT (1978) Generation of cytolytic T lymphocytes in vitro. IX. Induction of secondary CTL responses in primary long-term MLC by supernatants from secondary MLC. J Immunol 120:370–377

    PubMed  Google Scholar 

  58. Schimpl A, Wecker E (1972) Replacement of T cell function by a T cell product. Nature 237:15

    Google Scholar 

  59. Schreier MH, Iscove NN, Tees R, Aarden L, von Bochmer H (1980) Clones of killer and helper T cells: growth requirements, specificity and retention of function in long-term culture. Immunol Rev 51:315–336

    PubMed  Google Scholar 

  60. Shaw J, Monticone V, Mills G, Paetkau V (1978) Effects of costimulator on immune responses in vitro. J Immunol 120:1974–1980

    PubMed  Google Scholar 

  61. Smith KA, Gilbride KJ, Favata MF (1980a) Interleukin-1-promoted Interleukin-2-production. Behring Inst Mitt. 67:4–11

    Google Scholar 

  62. Smith KA (1980) T-cell growth factor. Immunol Rev 51:337–357

    PubMed  Google Scholar 

  63. Smith KA, Lachman LB, Oppenheim JJ, Favata MF (1980b) The functional relationship of the Interleukins. J Exp Med 151:1551–1556

    PubMed  Google Scholar 

  64. Sopori ML, Alter BJ, Bach FH, Bach ML (1977) Cell-free factor substitutes for “signal 2” in generating cytotoxic reactions. Eur J Immunol 7:823–825

    PubMed  Google Scholar 

  65. Spits H, De Vries JE, Terhorst C (1981) A permanent human cytotoxic T-cell line with high killing activity against a lymphoblastoid B-cell line shows preference for HLA A, B target antigens and lacks spontaneous cytotoxic activity. Cell Immunol 59:435–447

    PubMed  Google Scholar 

  66. Sporn MJ, Todaro GJ (1980) Autocrinc secretion and malignant transformation of cells. N Engl J Med 303:878–880

    Google Scholar 

  67. Sredni B, Volkmann D, Schwartz RH, Franc AS (1981) Antigenspecific human T cell clones: Development of clones requiring HLA-DR-compatible presenting cells for stimulation in presence of antigen. Proc Natl Acad Sci USA 78:1858–1862

    PubMed  Google Scholar 

  68. Stadler BM, Dougherty SF, Farrar JJ, Oppenheim JJ (1981) Relationship of cell cycle to recovery of Il-2 activity from human mononuclear cells, human and mouse T cell lines. J Immunol 127:1936–1940

    PubMed  Google Scholar 

  69. Stötter H, Rüde E, Wagner H (1980) T cell factor (interleukin 2) allows in vivo induction of T helper cells against heterologous erythrocytes in athymic (nu/nu) mice. Eur J Immunol 10:719–722

    PubMed  Google Scholar 

  70. Stull D, Gillis S (1981) Constitutive production of interleukin-2 activity by a T cell hybridoma. J Immunol 126:1680–1683

    PubMed  Google Scholar 

  71. Talmage DW, Woolnough JA, Hemmingsen H, Lopez L, Lafferty KL (1977) Activation of cytotoxic T cells by non stimulating tumor cells and spleen cell factor(s). Proc Natl Acad Sci USA 74:4610–4614

    PubMed  Google Scholar 

  72. Unanue ER (1981) The regulatory role of macrophages in antigenic stimulation. Part Two: Symbiotic relationship between lymphocytes and macrophages. Adv Immunol 31:1–41

    PubMed  Google Scholar 

  73. Uotila M, Rode HN, Gordon J (1978) Blastogenic factor: its role in the mixed leukocyte culture reaction. Eur J Immunol 8:133–138

    Google Scholar 

  74. Wagner H (1973) Synergy during in vitro cytotoxic allograft responses. I. Evidence for cell interaction between thymocytes and peripheral T cells. J Exp Med 138:1379–1397

    Google Scholar 

  75. Wagner H, Röllinghoff M, Nossal GJV (1973) T-cell-mediated immune responses induced in vitro: A probe for allograft and tumor immunity. Transplant Rev 17:3–36

    Google Scholar 

  76. Wagner H, Röllinghoff M (1978) T-T-cell interactions during in vitro cytotoxic allograft responses. I. Soluble products from activated Ly 1* T cells trigger autonomously antigen-primed Ly 23*-T cells to cell proliferation and cytolytic activity. J Exp Med 148:1523–1538

    PubMed  Google Scholar 

  77. Wagner H, Hardt C, Heeg K, Röllinghoff M, Pfizenmaier K (1980a) T-cell-derived helper factor allows in vivo induction of cytotoxic T cells in nu/nu mice. Nature 284:278–280

    Google Scholar 

  78. Wagner H, Hardt C, Heeg K, Pfizenmaier K, Solbach W, Bartlett R, Stockinger H, Röllinghoff M (1980b) T-T-cell interactions during cytotoxic T lymphocyte (CTL) responses: T cell derived helper factor (interleukin 2) as a probe to analyse CTL responsiveness and thymic maturation of CTL progenitors. Immunol Rev 51:215–255

    PubMed  Google Scholar 

  79. Wagner H, Röllinghoff M (Hrsg) (1980) Interleukin 2. Behring Inst Mitt 67

  80. Wagner H, Hardt C, Heeg K, Pfizenmaier K, Stötter H, Röllinghoff M (1982) The in vivo effects of interleukin 2 (TCGF). Immunobiology 139–156

  81. Watson J, Mochizuki D (1980) Interleukin 2: A class of T cell growth factors. Immunol Rev 51:257–278

    Google Scholar 

  82. Weinberger O, Herrmann S, Mescher MF, Benacerraf B, Burakoff SJ (1981) Antigen-presenting cell function in induction of T helper cells for cytotoxic T lymphocyte responses: Evidence for antigen-processing. Proc Natl Acad Sci USA 78:1796–1799

    PubMed  Google Scholar 

  83. Zarling JM, Bach FH (1979) Continuous culture of T cells cytotoxic for autologous human leukemic cells. Nature 280:685–687

    PubMed  Google Scholar 

  84. Ziegler K, Unanue E (1981) Identification of a macrophage antigen-processing event required for I-region restricted antigen presentation to T lymphocytes. J Immunol 127:1869–1875

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solbach, W., Röllinghoff, M. & Wagner, H. Die Rolle von Interleukin-2 bei der Aktivierung von zytotoxischen T-Lymphozyten. Klin Wochenschr 61, 67–75 (1983). https://doi.org/10.1007/BF01496657

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01496657

Key words

Schlüsselwörter

Navigation