Skip to main content
Log in

Kardiovaskuläre Wirkung des antidiuretischen Hormons Arginin-Vasopressin

Cardiovascular action of antidiuretic hormone arginine-vasopressin

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The two major biological actions of vasopressin are antidiuresis and vasoconstriction. The antidiuretic action of low concentrations of vasopressin is well established and concentrations 10 to 100 times above those required for antidiuresis elevate arterial blood pressure. Antidiuresis is mediated by V2-receptors at the kidney, whereas vasopressin constricts arterioles by binding at V1-receptors. Pharmacological effects of specific antagonists of the vasoconstrictor activity of vasopressin (vascular or V1-receptor antagonists) are presented. Low concentrations of vasopressin do have significant hemodynamic effects. Physiological concentrations of vasopressin cause vasoconstriction and elevate systemic vascular resistance. In subjects with intact cardiovascular reflex activity, however, cardiac output falls concomitantly and blood pressure therefore does not change. In animals with baroreceptor deafferentation or in patients with blunted baroreceptor reflexes (autonomic insufficiency) a rise in plasma vasopressin causes vasoconstriction and an increase in blood pressure, because cardiac output does not fall under these conditions. Vasopressin contributes substantially via increase in systemic vascular resistance to maintain blood pressure during water deprivation. During hemorrhage and hypotension vasopressin has a major role to restore blood pressure. In experimental hypertension vasopressin contributes to the development and maintenance of high blood pressure in DOCA, but not in genetic hypertensive rats. The role of vasopressin in human hypertension is not yet clear. Vasopressin in extrahypothalamic areas of the brain affects circulatory regulation by interaction with central cardiovascular control centers. The exact mechanism of how vasopressin is involved in central regulation of blood pressure remains to be established. In contrast to our previous opinion vasopressin is a vasoactive hormone also at low plasma concentrations. Its cardiovascular action is more complex than previously assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

cAMP:

cyclisches Adenosinmonophosphat

cDNA:

complementäre Desoxyribonucleinsäure

d(CH2)5 :

1-β-Mercapto-β,β-Cyclopentamethylenpropionsäure

d(CH2)5AVP:

(1-β-Mercapto-β,β-Cyclopentamethylenpropionsäure)-Arginin-Vasopressin

d(CH2)5Tyr(Me)AVP:

(1-β-Mercapto-β,β-Cyclopentamethylenpropionsäure)-2-O-Methyltyrosin)-Arginin-Vasopressin

d(CH2)5VDAVP:

(1-β-Mercapto-β,β-Cyclopentamethylenpropionsäure-4-Valin,-8-D-Arginin)-Vasopressin

DDAVP:

Deamino-8-D-Arginin-Vasopressin

DOCA:

Desoxycorticosteronacetat

dP:

1-Deaminopenicillamin

dP Tyr(Me)AVP:

(1-Deaminopenicillamin)-(2-O-Methyltyrosin)-Arginin-Vasopressin

dPVDAVP:

(1-Deaminopenicillamin, 4-Valin-8-D-Arginin)-Vasopressin

mRNA:

messenger-Ribonucleinsäure

SHRSP:

Spontan hypertone Ratten vom Stroke-prone-Unterstamm

Tyr(Me):

Methyltyrosin

Literatur

  1. Aisenbrey GA, Handleman WA, Arnold P, Manning M, Schrier RW (1981) Vascular effects of arginine vasopressin during fluid deprivation in the rat. J Clin Invest 67:961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Altura BM (1973) Selective microvascular constrictor actions of some neurohypophyseal peptides. Europ J Pharmacol 24:49–60

    Article  CAS  Google Scholar 

  3. Altura BM, Altura BT (1977) Vascular smooth muscle and neurohypophyseal hormones. Fed Proc 36:1853–1860

    CAS  PubMed  Google Scholar 

  4. Andrews CE, Brenner BM (1981) Relative contribution of arginine vasopressin und angiotensin II to maintenance of systemic arterial pressure in the anesthetized water-deprived rat. Circ Res 48:254–258

    Article  CAS  PubMed  Google Scholar 

  5. Arnauld F, Czernichow P, Fumoux F, Vincent JD (1977) The effects of hypotension and hypovolemia on the liberation of vasopressin during hemorrhage in the unanesthetized monkey. Pflügers Arch 371:193–200

    Article  CAS  PubMed  Google Scholar 

  6. Bankowski K, Manning M, Haldar J, Sawyer WH (1978) Design of potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem 21:850–853

    Article  CAS  PubMed  Google Scholar 

  7. Berecek KH, Murray RD, Gross F, Brody MJ (1982) Vasopressin and vascular reactivity in the development of DOCA hypertension in rats with hereditary diabetes insipidus. Hypertension 4:3–12

    Article  CAS  PubMed  Google Scholar 

  8. Berecek KH, Webb RL, Brody MJ (1983) Evidence for a central role for vasopressin in cardiovascular regulation. Am J Physiol 244:H852-H859

    CAS  PubMed  Google Scholar 

  9. Brownstein MJ, Russell JT, Gainer H (1980) Synthesis, transport and release of posterior pituitary hormones. Science 207:373–378

    Article  CAS  PubMed  Google Scholar 

  10. Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 192:423–435

    Article  CAS  PubMed  Google Scholar 

  11. Bussien JP, Waeber B, Nussberger J, Schaller MD, Gavras H, Hofbauer K, Brunner HR (1984) Does vasopressin sustain blood pressure of normally hydrated healthy volunteers? Am J Physiol 246:H143-H147

    CAS  PubMed  Google Scholar 

  12. Ciriello J, Calaresu FR (1980) Role of paraventricular and supraoptic nuclei in central cardiovascular regulation in the cat. Am J Physiol 239:R137-R140

    CAS  PubMed  Google Scholar 

  13. Costantini MG, Pearlmutter AF: Properties of the specific binding site for arginine vasopressin in rat hippocampal synaptic membranes (1984) J Biol Chem 259:11739–11745

    CAS  PubMed  Google Scholar 

  14. Cowley AW (1982) Vasopressin in cardiovascular regulation. In: Cardiovascular physiology IV, International review of Physiology. Vol 26, eds. Guyton AC, Hall JE, Baltimore, University Park Press, pp 189–242

    Google Scholar 

  15. Cowley AW, Cushman WC, Quillen EW, Skelton MM, Langford HG (1981) Vasopressin elevation in essential hypertension and increased responsiveness to sodium intake. Hypertension 3 (Suppl I):I-93–I-100

    Article  Google Scholar 

  16. Cowley AW, Merrill C, Osborn J, Barber BJ (1984) Influence of vasopressin and angiotensin on baroreflexes in the dog. Circ Res 54:163–172

    Article  CAS  PubMed  Google Scholar 

  17. Cowley AW Jr, Monos E, Guyton AC (1974) Interaction of vasopressin and the baroreceptor reflex system in the regulation of arterial blood pressure in the dog. Circ Res 34:505–514

    Article  CAS  PubMed  Google Scholar 

  18. Cowley AW, Switzer SJ, Guinn MM (1980) Evidence and quantification of the vasopressin arterial pressure control system in the dog. Circ Res 46:58–67

    Article  CAS  PubMed  Google Scholar 

  19. Crofton JT, Share L, Shade RE, Allen C, Tarnowski D (1978) Vasopressin in the rat with spontaneous hypertension. Am J Physiol 235:H361-H366

    CAS  PubMed  Google Scholar 

  20. Crofton JT, Share L, Shade RE, Lee-Kwon WJ, Manning M, Sawyer WH (1979) The importance of vasopressin in the development and maintenance of DOC-salt hypertension in the rat. Hypertension 1:31–38

    Article  CAS  PubMed  Google Scholar 

  21. Dousa TP, Valtin H (1976) Cellular actions of vasopressin in the mammalian kidney. Kidney Internat 10:46–63

    Article  CAS  Google Scholar 

  22. Dunn FJ, Brennan TJ, Nelson AE, Robertson GL (1973) The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest 52:3212–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ellis ME, Grollman A (1949) The antidiuretic hormone in the urine in experimental and clinical hypertension. Endocrinology 44:415–419

    Article  CAS  PubMed  Google Scholar 

  24. Farini F (1913) Diabete insipido ed opoterapia. Gazz Osped Clin 34:1135–1139

    Google Scholar 

  25. Frieden J, Keller AD (1954) Decreased resistance to hemorrhage in neuro-hypophysectomized dogs. Circ Res 2:214–220

    Article  CAS  PubMed  Google Scholar 

  26. Ganten D, Unger Th, Schölkens B, Rascher W, Speck G, Stock G (1981) Role of neuropeptides in regulation of blood pressure. In: Disturbances in neurogenic control of the circulation, eds. Abboud FM, Fozzard HA, Gilmore JC, Reis DJ, American Physiological Society, pp 139–151

  27. Ganten U, Rascher W, Lang RE, Dietz R, Rettig R, Unger Th, Taugner R, Ganten D (1983) Development of a new strain of spontaneously hypertensive rats homozygous for hypothalamic diabetes insipidus. Hypertension 5 (Suppl I):I-119–I-128

    Article  CAS  Google Scholar 

  28. Glänzer K, Prüßing B, Düsing R, Kramer HJ (1982) Hemodynamic and hormonal responses to 8-arginine-vasopressin in healthy man: effects of indomethacin. Klin Wochenschr 60:1234–1239

    Article  PubMed  Google Scholar 

  29. Heyndrickx G, Boettcher D, Vatner S (1976) Effects of angiotensin, vasopressin and methoxamine on cardiac function and blood flow distribution in conscious dogs. Am J Physiol 231:1579–1587

    CAS  PubMed  Google Scholar 

  30. Hofbauer KG, Mah SC, Wood JM, Baum P, Haenni H, Kraetz J (1984) Contribution of vascular and tubular effects of arginine-vasopressin to the development of deoxycorticosterone-salt hypertension in rats. J Hypertension 2 (Supl 3):333–335

    CAS  Google Scholar 

  31. Howell WH (1898) The physiological effects of extracts of the hypophysis cerebri and infundibular body. J Exp Med 3:245–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Imai Y, Nolan PL, Johnston CJ (1983) Restoration of suppressed baroreflex sensitivity in rats with hereditary diabetes insipidus (Brattleboro rats) by arginine-vasopressin and DDAVP. Circ Res 53:140–149

    Article  CAS  PubMed  Google Scholar 

  33. Jard S, Bockaert J (1975) Stimulus response coupling in neurohypophysical peptide target cells. Physiol Rev 55:489–536

    CAS  PubMed  Google Scholar 

  34. Khokhar AM, Slater JDH (1976) Increased renal excretion of arginine-vasopressin (AVP) during mild hydropenia in young men with mild essential benign hypertension. Clin Sci Med 51:691s-694s

    Google Scholar 

  35. Khokhar AM, Slater JDH, Ma J, Ramage CM (1980) The cardiovascular effect of vasopressin in relation to its plasma concentration in man and its relevance to high blood pressure. Clin Endocrin 13:259–266

    Article  CAS  Google Scholar 

  36. Kruszynski M, Lammek B, Manning M, Seto J, Haldar J, Sawyer WH (1980) [1-(β-mercapto-β,β-cyclopentamethylenepropionic acid),2-(O-methyl)tyrosine] arginine vasopressin and [1-(β-mercapto-β,β-cyclopentamethylenepropionic acid] arginine vasopressin, two highly potent antagonists of the vasopressor response to arginine vasopressin. J Med Chem 23:364–368

    Article  CAS  PubMed  Google Scholar 

  37. Land H, Schütz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 295:299–303

    Article  CAS  PubMed  Google Scholar 

  38. Lang RE, Rascher W, Unger Th, Ganten D (1981) Reduced content of vasopressin in the brain of spontaneously hypertensive as compared to normotensive rats. Neurosci Lett 23:199–202

    Article  CAS  PubMed  Google Scholar 

  39. Liard JF, Deriaz O, Tschopp M, Schoun J (1981) Cardiovascular effects of vasopressin infused into the vertebral circulation of conscious dogs. Clin Sci 61:345–347

    Article  CAS  PubMed  Google Scholar 

  40. Lowbridge J, Manning M, Haldar J, Sawyer WH (1978) [1-β-mercapto-β,β-cyclopentamethylenepropionic acid), 4-valine,-8-D-arginine] vasopressin, a potent and selective inhibitor of the vasopressor response to arginine vasopressin. J Med Chem 21:313–315

    Article  CAS  PubMed  Google Scholar 

  41. Manning M, Lowbridge J, Haldar J, Sawyer WH (1977a) Design of neurohypophyseal peptides that exhibit selective agonistic and antagonistic properties. Fed Proc 36:848–853

    Google Scholar 

  42. Manning M, Lowbridge J, Stier CT, Haldar J, Sawyer WH (1977b) (1-Deaminopenicillamine,-4-valine)-8-D-arginine-vasopressin, a highly potent inhibitor of the vasopressor response to arginine-vasopressin. J Med Chem 20:1228–1230

    Article  CAS  PubMed  Google Scholar 

  43. Manning M, Gzronka Z, Sawyer WH (1981) Synthesis of posterior pituitary hormones and hormone analogues. In: The Pituitary, eds. Bearwell C, Robinson G, Kent, England, Butterworths, pp 265–296

    Google Scholar 

  44. Manning M, Klis WA, Ilma A, Seto J, Sawyer WH (1982a) Design of more potent and selective antagonists of the antidiuretic responses to arginine-vasopressin devoid of antidiuretic agonism. J Med Chem 25:414–419

    Article  CAS  PubMed  Google Scholar 

  45. Manning M, Ilma A, Klis WA, Kolodziejczyk AM, Seto J, Sawyer WH (1982b) Design of more potent antagonists of the antidiuretic responses to arginine vasopressin. J Med Chem 25:45–50

    Article  CAS  PubMed  Google Scholar 

  46. Manning M, Sawyer WH (1982) Antagonists of vasopressor and antidiuretic responses to arginine vasopressin. Ann Int Med 96:520–522

    Article  CAS  PubMed  Google Scholar 

  47. Matsuguchi H, Schmid PG (1982) Pressor responses to vasopressin and impaired baroreflex function in DOC-salt hypertension. Am J Physiol 242:H44-H49

    CAS  PubMed  Google Scholar 

  48. Matsuguchi H, Sharabi FM, Gordon FJ, Johnson AK, Schmid PG (1982) Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus solitarii region of the rat. Neuropharmacology 21:687–693

    Article  CAS  PubMed  Google Scholar 

  49. Möhring J (1978) Neurohypophyseal vasopressor principle: vasopressor hormone as well as antidiuretic hormone? Klin Wochenschr 56 (Suppl I):71–79

    Article  PubMed  Google Scholar 

  50. Möhring J, Glänzer K, Maciel JA Jr, Düsing R, Kramer HJ, Arbogast R, Koch-Weser J (1980a) Greatly enhanced pressor response to antidiuretic hormone in patients with impaired cardiovascular reflexes due to idiopathic orthostatic hypotension. J Cardiovasc Pharmacol 2:367–376

    Article  PubMed  Google Scholar 

  51. Möhring J, Möhring B, Petri M, Haack D (1977) Vasopressor role of ADH in the pathogenesis of malignant DOC hypertension. Am J Physiol 232:F260-F269

    PubMed  Google Scholar 

  52. Möhring J, Kintz J, Schoun J (1979) Studies on the role of vasopressin in blood pressure control of spontaneously hypertension rats with established hypertension. J Cardiovasc Pharmacol 1:593–608

    Article  PubMed  Google Scholar 

  53. Möhring J, Kintz J, Schoun J, McNeill JR (1981) Pressor responsiveness and cardiovascular reflex activity in spontaneously hypertensive and normotensive rats during vasopressin infusion. J Cardiovasc Pharmacol 3:948–957

    Article  PubMed  Google Scholar 

  54. Möhring J, Schoun J, Kintz J, Mc Neill R (1980b) Decreased vasopressin content in brain stem of rats with spontaneous hypertension. Naunyn Schmiedeberg's Arch Pharmacol 315:83–84

    Article  Google Scholar 

  55. Montani JP, Liard JF, Schoun J, Möhring J (1980) Hemodynamic effects of exogenous and endogenous vasopressin at low plasma concentration in conscious dogs. Circ Res 47:346–355

    Article  CAS  PubMed  Google Scholar 

  56. Morel F (1981) Sites of hormone action in the mammalian nephron. Am J Physiol 240:F159-F164

    CAS  PubMed  Google Scholar 

  57. Nestor JJ, Ferger MF, Du Vigneaud V (1975) (1-β-mercapto-β,β-pentamethylenepropionic acid) oxytocin, a potent inhibitor of oxytocin. J Med Chem 18:284–287

    Article  CAS  PubMed  Google Scholar 

  58. Oliver G, Schäfer EA (1895) On the physiological actions of extracts of the pituitary body and certain other glandular organs. J Physiol (Lond) 18:277–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Padfield PL, Brown JJ, Lever AF, Morton JJ, Robertson JIS (1976) Changes of vasopressin in hypertension: cause or effect? Lancet 1:1255–1257

    Article  CAS  PubMed  Google Scholar 

  60. Padfield PL, Brown JJ, Lever AF, Morton JJ, Robertson JIS (1981) Blood pressure in acute and chronic vasopressin excess. Studies of malignant hypertension and the syndrome of inappropriate antidiuretic hormone secretion. N Engl J Med 304:1067–1070

    Article  CAS  PubMed  Google Scholar 

  61. Page IH, Sweet JE (1937) The effect of hypophysectomy on arterial blood pressure of dogs with experimental hypertension. Am J Physiol 120:238–245

    Google Scholar 

  62. Penit J, Faure M, Jard S (1983) Vasopressin and angiotensin II receptors in rat aortic smooth muscle in culture. Am J Physiol 244:E72-E82

    CAS  PubMed  Google Scholar 

  63. Quillen EW, Cowley AW (1983) Influence of volume changes on osmolality — vasopressin relationship in conscious dogs. Am J Physiol 244:H73-H79

    CAS  PubMed  Google Scholar 

  64. Rabito SF, Carretero OA, Scicli AG (1981) Evidence against a role of vasopressin in the maintenance of high blood pressure in mineralocorticoid and renovascular hypertension. Hypertension 3:34–38

    Article  CAS  PubMed  Google Scholar 

  65. Rascher W, Fink B, Gross F (1982a) Increased pressor responses following microinjections of arginine vasopressin into the nucleus tractus solitarii of spontaneously hypertensive rats. Naunyn Schmiedeberg's Arch Pharmacol 319 (Suppl):R48

  66. Rascher W, Lang RE, Fink B, Ganten D, Unger Th, Gross F (1982b) Reduced synthesis of arginine-vasopressin in spontaneously hypertensive rats. Clin Sci 63:117s-119s

    Article  Google Scholar 

  67. Rascher W, Lang RE, Ganten D, Meffle H, Taubitz M, Unger Th, Gross F (1983) Vasopressin in deoxycorticosterone acetate hypertension of rats: a hemodynamic analysis. J Cardiovasc Pharmacol 5:418–425

    Article  CAS  PubMed  Google Scholar 

  68. Rascher W, Lang RE, Unger Th (1985) Vasopressin, cardiovascular regulation and hypertension. In: Current Topics in Neuroendocrinology, Vol 4, eds. Ganten D, Pfaff D, Heidelberg Berlin New York, Springer, pp 101–136

    Google Scholar 

  69. Rascher W, Lang RE, Unger Th, Ganten D, Gross F (1982c) Vasopressin in brain of spontaneously hypertensive rats. Am J Physiol 242:H496-H499

    CAS  PubMed  Google Scholar 

  70. Rascher W, Meffle H, Gross F (1985) Hemodynamic effects of arginine-vasopressin in conscious water-deprived rats. Am J Physiol, in press

  71. Rascher W, Weidmann E, Gross F (1981) Vasopressin in the plasma of stroke-prone spontaneously hypertensive rats. Clin Sci 61:295–298

    Article  CAS  PubMed  Google Scholar 

  72. Robertson GL (1977) The regulation of vasopressin function in health and disease. Recent Prog Horm Res 33:333–385

    Google Scholar 

  73. Robertson GL, Athar S (1976) The interaction of blood osmolality and blood volume in regulation plasma vasopressin in man. J Endocrinol Metab 42:613–620

    Article  CAS  Google Scholar 

  74. Sawyer WH, Acosta M, Manning M (1974) Structural changes in the arginine vasopressin molecule that prolong its antidiuretic action. Endocrinology 95:140–149

    Article  CAS  PubMed  Google Scholar 

  75. Sawyer WH, Grzonka Z, Manning M (1981) Neurohypophyseal peptides: Design of tissue-specific agonists and antagonists. Mol Cell Endocrinol 22:117–134

    Article  CAS  PubMed  Google Scholar 

  76. Sawyer WH, Manning M (1973) Synthetic analogues of oxytocin and vasopressin. Ann Rev Pharm 13:5–17

    Article  CAS  Google Scholar 

  77. Sawyer WH, Pang PKT, Seto J, McEnroe M, Lammek B, Manning M (1982) Vasopressin analogues that antagonize antidiuretic responses by rats to the antidiuretic hormone. Science 212:49–51

    Article  Google Scholar 

  78. Schmid PG, Abboud FM, Wendling MG, Ramberg ES, Mark AL, Heistad DD, Eckstein JW (1974) Regional vascular effects of vasopressin: plasma levels and circulatory responses. Am J Physiol 227:998–1004

    CAS  PubMed  Google Scholar 

  79. Schrier RW, Berl T, Anderson RJ (1979) Osmotic and nonosmotic release of vasopressin. Am J Physiol 236:F321-F332

    CAS  PubMed  Google Scholar 

  80. Schulz H, Du Vigneaud V (1966) Synthesis of (1-l-penicillamine)oxytocin, (1-d-penicillamine)oxytocin and (1-deaminopenicillamine)oxytocin, potent inhibitor of the oxytocin response to oxytocin. J Med Chem 9:647–650

    Article  CAS  PubMed  Google Scholar 

  81. Schwartz J, Reid IA (1981) Effect of vasopressin blockade on blood pressure regulation during hemorrhage in conscious dogs. Endocrinology 109:1778–1780

    Article  CAS  PubMed  Google Scholar 

  82. Smith MJ, Cowley AW, Guyton AC, Manning RD (1979) Acute and chronic effects of vasopressin on blood pressure, electrolytes and fluid volumes. Am J Physiol 237:F232-F240

    CAS  PubMed  Google Scholar 

  83. Sofroniew MV, Weindl A (1978) Projections from the parvocellular vasopressin- and neurophysin-containing neurons of the suprachiasmatic nucleus. Am J Anat 153:391–401

    Article  CAS  PubMed  Google Scholar 

  84. Swanson LW (1977) Immunohistochemical evidence for a neurophysin containing autonomic pathway in the paraventricular nucleus of the hypothalamus. Brain Res 128:346–353

    Article  CAS  PubMed  Google Scholar 

  85. Szczepanska-Sadowska E (1973) Hemodynamic effects of a moderate increase of the plasma vasopressin level in conscious dogs. Pflügers Arch 338:313–322

    Article  CAS  PubMed  Google Scholar 

  86. Unger Th, Rohmeiss P, Becker H, Ganten D, Lang RE, Petty M (1984) Sympathetic activation following cental vasopressin receptor stimulation in conscious rats. J Hypertension 2 (Suppl 3):25–27

    CAS  Google Scholar 

  87. Versteeg CAM, Bohus B, de Jong W (1982) Inhibition of centrally evoked pressor responses by neurohypophyseal peptides and their fragments. Neuropharmacology 21:1359–1364

    Article  CAS  PubMed  Google Scholar 

  88. Von den Velden R (1913) Die Nierenwirkung von Hypophysenextrakten bei Menschen. Berlin Klin Wochenschr 50:2083–2086

    Google Scholar 

  89. Walter R (1975) Neurophysins: carriers of peptide hormones. Ann NY Acad Sci 248:1–512

    Article  Google Scholar 

  90. Weitzman RE, Fisher DA, DiStefano JJ, Bennett CM (1977) Episodic secretion of arginine vasopressin. Am J Physiol 233:E32-E36

    CAS  PubMed  Google Scholar 

  91. Weitzman RE, Reviczky A, Oddie TH, Fisher DA (1980) Effect of osmoality on arginine vasopressin and renin release after hemorrhage. Am J Physiol 238:E62-E68

    CAS  PubMed  Google Scholar 

  92. Young DB, Pan YJ, Guyton AC (1977) Control of extracellular sodium concentration by antidiuretic hormone-thirst feedback mechanism. Am J Physiol 232:R145-R149

    CAS  PubMed  Google Scholar 

  93. Zerbe RL, Feuerstein G, Meyer DK, Kopin IJ (1982) Cardiovascular, sympathetic, and renin-angiotensin system responses to hemorrhage in vasopressin-deficient rats. Endocrinology 111:608–613

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rascher, W. Kardiovaskuläre Wirkung des antidiuretischen Hormons Arginin-Vasopressin. Klin Wochenschr 63, 989–999 (1985). https://doi.org/10.1007/BF01737635

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01737635

Key words

Navigation