Skip to main content
Log in

α1-Proteinase inhibitor and mucus proteinase inhibitor in human lung emphysema

  • Original Article
  • Published:
The clinical investigator Aims and scope Submit manuscript

Summary

The role of the antiproteases α1-proteinase inhibitor (α1PI) and mucus proteinase inhibitor (MPI) in human lung emphysema was investigated by measuring their amount and functional activity against trypsin, leukocyte elastase, and pancreatic elastase in the bronchoalveolar lavage fluid (BALF). In addition, leukocyte elastase was quantified in the lavage samples by measuring the concentration of the elastase-α1Pl-complex. The study population consisted of 38 patients (5 nonsmokers, 8 former smokers, 25 smokers) with aquired emphysema (i.e., emphysema which is not caused by α1PI deficiency), and 44 individuals (16 nonsmokers, 8 former smokers, 20 smokers) without emphysema. No differences were found between patients with and without emphysema in the activities of α1PI and MPI, or in the concentration of α1PI The concentration of MPI was significantly higher in the BALF of patients with emphysema than in that of patients without emphysema (p = 0.025). A significantly higher concentration of elastase-α1PI complex was found in patients with emphysema than in those without emphysema (p = 0.041). This finding could reflect the higher proteinase burden to which patients with emphysema are exposed. The increase of MPI in lavage fluid of patients with emphysema seems to be the result of increased production in emphysematous lungs. However, it remains unclear why patients develop emphysema while showing an increased content of MPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

α1PI:

α1-proteinase inhibitor

BALF:

bronchoalveolar lavage fluid

ELISA:

enzyme-linked immunosorbent assay

LEIC:

leukocyte elastase inhibitory capacity

MPI:

mucus proteinase inhibitor

PEIC:

pancreatic elastase inhibitory capacity

TIC:

trypsin inhibitory capacity

References

  1. Afford SC, Stockley RA, Kramps JA, Dijkman JH, Burnett D (1985) Concentration of bronchoalveolar lavage fluid by ultrafiltration: evidence of differential protein loss and functional inactivation of proteinase inhibitors. Anal Biochem 151:125–130.

    Article  CAS  PubMed  Google Scholar 

  2. Beatty K, Robertie P, Senior RM, Travis J (1982) Determination of oxidised alpha-1-proteinase inhibitor in serum. J Lab Clin Med 100:186–192.

    CAS  PubMed  Google Scholar 

  3. Boudier C, Bieth JG (1989) Mucus proteinase inhibitor: a fastacting inhibitor of leukocyte elastase. Biochim Biophys Acta 995:36–41.

    Article  CAS  PubMed  Google Scholar 

  4. Boudier C, Pelletier A, Pauli G, Bieth JG (1983) The functional activity of α1-proteinase inhibitor in bronchoalveolar lavage fluids from healthy human smokers and nonsmokers. Clin Chim Acta 132:309–315.

    Article  CAS  PubMed  Google Scholar 

  5. Campbell EJ, Campbell MA (1988) Pericellular proteolysis by neutrophils in the presence of proteinase inhibitors: effects of substrate opsonization. J Cell Biol 106:667–676.

    Article  CAS  PubMed  Google Scholar 

  6. Campbell EJ, Senior RM, McDonald JA, Cox DL, Greco JM, Landis JA (1982) Proteolysis by neutrophils: relative importance of cell-substrate contact and oxidative inactivation of proteinase inhibitors in vitro. J Clin Invest 70:845–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carp H, Janoff A (1978) Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase-inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants. Am Rev Respir Dis 118:617–621.

    CAS  PubMed  Google Scholar 

  8. Carp H, Miller F, Hoidal JR, Janoff A (1982) Potential mechanisms of emphysema: α1-proteinase inhibitor recovered from lungs of cigarette smokers contains oxidised methionin and has decreased elastase inhibitory capacity. Proc Natl Acad Sci USA 79:2041–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castillo MJ, Nakajima K, Zimmerman M, Powers JC (1979) Sensitive substrates for human leukocyte and porcine pancreatic elastase: a study of the merits of various chromophoric and fluorogenic leaving groups in assays for serine proteases. Anal Biochem 99:53–64.

    Article  CAS  PubMed  Google Scholar 

  10. Chase T, Shaw E (1970) Titration of trypsin, plasmin, and thrombin with p-nitrophenyl-p′-guanidinobenzoate HCl. Meth Enzymol 19:20–27.

    Article  Google Scholar 

  11. Chowdhury P, Bone RC, Louria DB, Rayford PL (1982) Effect of cigarette smoke on human serum trypsin inhibitory capacity and antitrypsin concentrations. Am Rev Respir Dis 126:177–179.

    CAS  PubMed  Google Scholar 

  12. Christensen TG, Korthy AL, Snider GL, Hayes JA (1977) Irreversible bronchial goblet cell metaplasia in hamsters with elastase-induced panacinar emphysema. J Clin Invest 59:379–404.

    Article  Google Scholar 

  13. Deutsche Gesellschaft für Pneumologie and Tuberkulose (1988) Empfehlungen zur diagnostischen bronchoalveolären Lavage. Prax Klin Pneumol 42:119–122.

    Google Scholar 

  14. DeWater R, Willems LNA, Van Mujen GNP, Franken C, Fransen JAM, Dijkman JH, Kramps JA (1986) Ultrastructural localization of bronchial antileukoprotease in central and peripheral human airways by a gold-labeling technique using monoclonal antibodies. Am Rev Respir Dis 133:882–890.

    CAS  Google Scholar 

  15. Dijkman JH, Franken C, Kramps JA (1987) Antileukoprotease in sputum during bronchial infections. In: Taylor JC, Mittman C (eds) Pulmonary emphysema and proteolysis. Academic Press, New York London, pp 289–297.

    Google Scholar 

  16. Fritz H (1988) Human mucus proteinase inhibitor (human MPI). Biol Chem Hoppe Seyler 369 [Suppl] : 79–82.

  17. Gadek JE, Fells GA, Crystal RG (1979) Cigarette smoke induces functional antiprotease deficiency in the lower respiratory tract of humans. Science 206:1315–1316.

    Article  CAS  PubMed  Google Scholar 

  18. Green NM, Work W (1952) Pancreatic trypsin inhibitor. Biochem J 54:347–352.

    Article  Google Scholar 

  19. Hochstrasser K, Reichert R, Schwarz S, Werle E (1972) Isolierung und Charakterisierung eines Protease Inhibitors aus menschlichem Bronchialsekret. Hoppe-Seylers Z Physiol Chem 353:221–226.

    Article  CAS  PubMed  Google Scholar 

  20. Johnson D, Travis J (1979) The oxidative inactivation of human α1-proteinase inhibitor: further evidence for methionin at the reactive center. J Biol Chem 254:4022–4024.

    CAS  PubMed  Google Scholar 

  21. Kramps JA, Franken C, Meijer CJLM, Dijkman JH (1981) Localization of a low-molecular-weight protease inhibitor in serous cells of the respiratory tract. J Histochem Cytochem 29:712–719.

    Article  CAS  PubMed  Google Scholar 

  22. Kramps JA, Franken C, Dijkman JH (1988) Quantity of anti-leukoprotease relative to α1-proteinase inhibitor in peripheral airspaces of the human lung. Clin Sci 75:351–353.

    Article  CAS  PubMed  Google Scholar 

  23. Kramps JA, Appelhans H, Nikiforov T, Dijkman JH (1989) Trypsin, chymotrypsin and leukocyte elastase are inhibited by the second COOH-terminal domaine of antileukoprotease. Am Rev Respi Dis 139:A201.

    Google Scholar 

  24. Kueppers F, Bromke BJ (1983) Protease inhibitors in tracheobronchial secretions. J Lab Clin Med 101:747–757.

    CAS  PubMed  Google Scholar 

  25. Laurell CB, Eriksson S (1963) The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest 15:132–140.

    Article  CAS  Google Scholar 

  26. Lellouch J, Claude J-R, Martin J-P, Orssaud G, Zaoui D, Bieth JG (1985) Smoking does not reduce the functional activity of serum alpha-1-proteinase inhibitor. Am Rev Respir Dis 132:818–820.

    CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275.

    CAS  PubMed  Google Scholar 

  28. Mann HB, Whitney PR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18: 50–60.

    Article  Google Scholar 

  29. Morrison HM, Kramps JA, Burnett D, Stockley RA (1987) Lung lavage fluid from patients with α1-proteinase inhibitor deficiency or chronic obstructive bronchitis: anti-elastase function and cell profile. Clin Sci 72:373–381.

    Article  CAS  PubMed  Google Scholar 

  30. Mullen JBM, Wright JL, Wiggs BR, Pare PD, Hogg JC (1985) Reassessment of inflammation of airways in chronic bronchitis. B M J 291:1235–1239.

    Article  CAS  Google Scholar 

  31. Padrines M, Schneider-Pozzer M, Bieth JG (1989) Inhibition of neutrophil elastase by alpha-1-proteinase inhibitor oxidized by activated neutrophils. Am Rev Respir Dis 139:783–790.

    Article  CAS  PubMed  Google Scholar 

  32. Powers JC, Boone R, Carroll DL, Gupton BF, Kam CM, Nishino N, Sakamoto M, Thy PM (1984) Reaction of azapeptides with human leukocyte elastase and porcine pancreatic elastase. J Biol Chem 259:4288–4294.

    CAS  PubMed  Google Scholar 

  33. Schiessler H, Fink E, Fritz H (1976) Acid-stable proteinase inhibitors from human seminal plasma. Methods Enzymol 45:847–859.

    Article  CAS  PubMed  Google Scholar 

  34. Schiessler H, Hochstrasser K, Ohlsson K (1978) Acid stable inhibitors of granulocyte neutral proteases in human mucous secretions: biochemistry and possible biological functions. In: Havemann K, Janoff A (eds) Neutral proteases of human polymorphonuclear leukocytes. Urban & Schwarzenberg, München Wien Baltimore, pp 195–207.

    Google Scholar 

  35. Snider GL, Hayes JA, Franzblau C, Kagam HM, Stone PJ, Korthy AL (1973) Relationship between elastinolytic activity and experimental emphysema-inducing properties of papain preparations. Am Rev Respir Dis 110:254–262.

    Article  Google Scholar 

  36. Stockley RA, Afford SC (1984) Qualitative studies of lung lavage α1-proteinase inhibitor. Hoppe Seylers Z Physiol Chem 365:503–510.

    Article  CAS  PubMed  Google Scholar 

  37. Stone PJ, McGowan SE, Bernardo J, Snider GL, Franzblau C (1983) Functional α1-protease inhibitor in the lower respiratory tract of cigarette smokers is not decreased. Science 221:1187–1189.

    Article  CAS  PubMed  Google Scholar 

  38. Thurlbeck WM, Ryder RC, Sternby N (1974) A comparative study of the severity of emphysema in necropsy populations in three different countries. Am Rev Respir Dis 109:239–248.

    CAS  PubMed  Google Scholar 

  39. Trefz G, Heck B, Schulz V, Ebert W (1989) Functional activity of the α1-proteinase inhibitor in the serum and bronchoalveolar lavage fluid in acquired pulmonary emphysema. Prax Klin Pneumol 43:446–451.

    CAS  Google Scholar 

  40. Wewers MD, Herzyk DJ, Gadek JE (1989) Comparison of smoker and nonsmoker lavage fluid for the range of the association with neutrophil elastase. Am J Respir Cell Mol Biol 1:423–429.

    Article  CAS  PubMed  Google Scholar 

  41. Willems LNA, Otto-Verberne CJM, Kramps JA, tenHaveOpbroek AAW, Dijkman JH (1986) Detection of antileukoprotease in connective tissue of the lung. Histochemistry 86:165–168.

    Article  CAS  PubMed  Google Scholar 

  42. Willems LNA, Kramps JA, Stijnen T, Sterk PJ, Weening JJ, Dijkman JH (1989) Antileukoprotease-containing bronchiolar cells. Am Rev Respir Dis 139:1244–1250.

    Article  CAS  PubMed  Google Scholar 

  43. Zimmerman M, Ashe B, Yurewicz EC, Patel G (1977) Sensitive assays for trypsin, elastase, and chymotrypsin using new fluorogenic substrates. Anal Biochem 78:47–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trefz, G., Schließer, J., Heck, B. et al. α1-Proteinase inhibitor and mucus proteinase inhibitor in human lung emphysema. Clin Investig 70, 269–276 (1992). https://doi.org/10.1007/BF00184661

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00184661

Key words

Navigation