Skip to main content
Log in

Molecular biology of testicular germ cell tumors: current status

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Conclusions

Changes in proto-oncogenes and tumor-suppressor genes at the molecular level are associated with the development and progression of testicular GCTs (Fig. 3). Investigations at this level, however, are only in their initial stages, and therefore the overall genetic changes which lead to the development of a metastasizing tumor are not known. Investigations show however, that undifferentiated GCTs (seminoma, embryonal carcinoma, chorionepithelioma) display molecular changes that are different from those of differentiated GCTs (teratocarcinoma, mixed tumors). In undifferentiated GCTs the following changes have been demonstrated: an increased expression of the proto-oncogenes c-kit, N-myc, c-myc, and c-mos; mutations in N-ras; missing expression in the RB tumor-suppressor gene; and a general hypomethylation of the DNA. These events possibly lead to a blockade of the differentiation process, and these GCTs may therefore correspond to an earlier stage of embryogenesis. These changes, on the other hand, do not occur in GCTs with differentiated tissue parts. The conspicuous expression of the c-erbB1 and c-erbB2 proto-oncogenes and also that of the RB tumor-suppressor gene is clearly associated in these tumors with differentiation. Important events in the formation or progression of teratocarcinoma and of the partly differentiated nonseminoma are, moreover, a generally lower number of copies of chromosome 15, a possible LOH at the nm23 locus, and hypermethylation, which may result in a switching off of particular genes.

How the above molecular changes actually provide a clinically relevant supplement to the traditional classification of GCTs must be demonstrated by further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GCT :

Germ cell turmor

CIS :

Carcinoma-in-situ

PCR :

Polymerase chain reaction

LOH :

Loss of heterozygosity

SCF :

Stem cell factor

SSCP :

Single Strand conformation polymorphism

References

  1. Pottern LM, Goedert JJ (1986) Epidemiology of testicular cancer. In: Javadpour N (1986) Principles and management of testicular cancer, chap 7, Thieme, New York, pp 108

    Google Scholar 

  2. Peckham M (1988) Testicular cancer. Rev Oncol 1:439

    Google Scholar 

  3. Swerdlow AJ (1993) The epidemiology of testicular cancer. Eur Urol 23:35

    Google Scholar 

  4. Schultz HP, Arends J, Barblebo H (1984) Testicular carcinoma in Denmark 1976–1980. Stage and selected clinical parameters at presentation. Acta Radiol Oncol 23:249

    Google Scholar 

  5. Weißbach L, Hildenbrand G (1984) Register und Verbundstudie für Hodentumore Ein Ergebnisbericht nach sieben Jahren. Z Allg Med 60:156

    Google Scholar 

  6. Einhorn LH, Donuhue JP (1977) Improved chemotherapy in disseminated testicular cancer. J Urol 117:65

    Google Scholar 

  7. Schmoll HJ (1993) Biology and treatment of testicular cancer. Consultant series: the role of haematopoietic growth factors. Gardiner Caldwell Comunications

  8. Haber M, Stewart BW (1985) Oncogenes. A possible role for cancer genes in human malignant disease. Med J Aus 142:402

    Google Scholar 

  9. Makela TP, Alitalo K (1986) Proto-oncogene amplification: role in tumor progression. Ann Clinical Res 18:290

    Google Scholar 

  10. Sager R (1989) Tumor suppressor genes: the puzzle and the promise. Science 242:1406

    Google Scholar 

  11. Knudson AG (1993) Antioncogenes and human cancer. Proc Natl Acad Sci USA 90:10914

    Google Scholar 

  12. Holstein AF, Schütte B, Becker H, Hartmann M (1987) Morphology of normal and malignant germ cells. Int J Androl 10:1

    Google Scholar 

  13. Skakkebak NE, Berthelsen JG, Giwercman A, Müller J (1987) Carcinoma in situ of the testis: possible origin from gonocytes and precursor of all germ cell tumours except spermatocytoma. Int J Androl 10:19

    Google Scholar 

  14. Oosterhuis JW, Castedo SMMJ, De Jong B, Cornelisse J, Dam A, Sleijfer DT, Schraffordt Koops (1989) Ploidy of primary germ cell tumours of the testis. Pathogenetic and clinical relevance. Lab Invest 60:14

    Google Scholar 

  15. Dieckmann KP, Loy V (1993) Prevalence of bilateral testicular germ cell tumors and early detection by testicular intraepithelial neoplasia. Eur Urol 23:22

    Google Scholar 

  16. Sesterhenn IA (1985) The role of intratubular malignant germ cells in the histogenesis of germ cell tumours. In: Jones WG, Milford Ward A, Anderson CK (ed) Proceedings of the Second Germ Cell Tumour Conference, Leeds, p 25

  17. Looijenga LHJ, Gillis AJM, Van Putten WLJ, Oosterhuis JW (1993) In situ numeric analysis of centromeric regions of chromosomes 1, 12, and 15 of seminomas, nonseminomatous germ cell tumours and carcinoma in situ of human testis. Lab Invest 68:211

    Google Scholar 

  18. Boveri (1914) Zur Frage der Entstehung maligner Tumoren. Fischer, Jena

    Google Scholar 

  19. Rowley JD (1990) Molecular cytogenetics: Rosetta stone for understanding cancer-twenty-ninth GHA. Glowes Memorial Award Lecture. Cancer Res 50:3816

    Google Scholar 

  20. Rabbitts TH (1994) Chromosomal translocations in human cancers. Nature 372 (6502):143

    Google Scholar 

  21. Atkins NB (1973) High chromosome numbers of seminomata and malignant teratomata of the testis: a review of data on 103 tumours. Br J Cancer 28:275

    Google Scholar 

  22. Fossa SD, Nesland JM, Pettersen EO, Amellem O, Waehre H, Heimdal K (1991) DNA ploidy in primary testicular cancer. Br J Cancer 64:948

    Google Scholar 

  23. Atkins N, Baker MC (1982) Specific chromosome change, i (12p) in testicular tumours. Lancet 8311:1340

    Google Scholar 

  24. Delozier-Blanchet CD, Engel E, Walt H (1985) Isochromosom 12p in malignant testicular tumours. Cancer Genet Cytogenet 15:375

    Google Scholar 

  25. Suijkerbuijk RF, van de Veen AY, van Echten J, Buys C, de Jong B, Oosterhuis JW, Warburton DA, Cassiman JJ, Schonk D, Geurts van Kessel A (1991) Demonstration of the genuine iso 12p character of the standard marker chromosome of testicular germ cell tumours and identification of further chromosome 12 aberrations by competitive in situ hybridisation. Am J Hum Genet 48:269

    Google Scholar 

  26. Rodriequez E, Mathew S, Reuter V, Ilson DH, Bosl GJ, Chaganti RSK (1992) Cytogenetic analysis of 124 prospectivly ascertaind male germ tumours Cancer Res 52:2285

    Google Scholar 

  27. Bosl GJ, Dmitrovsky E, Reuter VE, Samaniego F, Rodriguez E, Geller NL, Chaganti RS (1989) Isochromosome of the short arm of chromosome 12: clinically useful markers for male germ cell tumours J Natl Cancer Inst 81:1874

    Google Scholar 

  28. Bosl GJ, Ilson DH, Rodriguez E, Motzer RJ, Reuter VE, Chaganti RSK (1994) Clinical relevanz of the i(12p) marker chromosome in germ cell tumours, J Natl Cancer Inst 86:349

    Google Scholar 

  29. Atkins NB, Baker MC (1992) X-Chromatin, sex chromosomes and ploidy in 37 germ cell tumors of the testis. Cancer Genet Cytogenet 59:54

    Google Scholar 

  30. Peltomäki P, Halma A, de la Chapelle A (1989) Molecular studies of the sex chromosomes in human testicular cancer: pronounced changes in X and Y chromosome dosage in some tumours. Genes Chromosom Cancer 1:42–47

    Google Scholar 

  31. Peltomäki P, Lothe R, Borresen AL, Fossa SD, Brogger A, de la Chapelle A (1991) Altered dosage of the sex chromosomes in human testicular cancer: a molecular genetic study. Int J Cancer 47:518–522

    Google Scholar 

  32. Wang N, Trend B, Bronson DL, Fraley ES (1980) Nonrandom abnormalities of chromosome 1 in human testicular cancers. Cancer Res 40:796

    Google Scholar 

  33. Delozier-Blanchet CD, Walt H, Engel E, Vuagnat P (1987) Cytogenetic studies of human testicular germ cell tumours. Int J Androl 10:69

    Google Scholar 

  34. De Jong B, Oosterhuis JW, Castedo SMMJ, Vos A, Te Meerman GJ (1990) Pathogenesis of adult testicular germ cell tumours: a cytogenetic model. Cancer Genet Cytogenet 48:143

    Google Scholar 

  35. Samaniego F, Rodriguez E, Houldsworth J (1990) Cytogenetic and molecular analysis of human male germ tumours: chromosome 12 abnormalities and gene amplification. Genes Chromosom Cancer 1:289

    Google Scholar 

  36. Murty VVVS, Houldsworth J, Baldwin S, Reuter V, Hunziker W, Besmer P, Bosl G, Chaganti RSK (1992) Allelic deletions in the long arm of chromosome 12 identify sites of candidate tumour suppressor genes in male germ cell tumours. Proc Natl Acad Sci 89:11006

    Google Scholar 

  37. Han HJ, Yanagisawa A, Kato Y, Park JG, Nakamura J (1993) Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer Cancer Res 53:5087

    Google Scholar 

  38. Steeg PS (1992) Suppressor genes in breast cancer: an overview. Cancer Treat Res 61:45

    Google Scholar 

  39. Callahan R, Cropp CS, Merlo GR, Liscia DS, Cappa AP, Lidereau R (1992) Somatic mutation and human breast cancer. A status report. Cancer 69 [Suppl 6]:1582

    Google Scholar 

  40. Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci 79:7837

    Google Scholar 

  41. de Klein A, van Kessel AG, Grosvelt G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephonson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300:765

    Google Scholar 

  42. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984) Amplification of N-myc in human neuroblastomas correlates with advanced disease stage. Science 242:1121

    Google Scholar 

  43. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y (1991) Accumulation of genetic alterations and progression of primary breast cancer. Cancer Res 51:5794

    Google Scholar 

  44. Kath R, Rodeck U, Menssen HD, Mancianti ML, Linnebach AJ, Elder ED, Herlyn M (1989) Tumor progression in the human melanocytic system. Anticancer Res 9:865

    Google Scholar 

  45. Kovacs G, Fuzesi L, Emanual A, Kung HF (1991) Cytogenetics of papillary renal cell tumours. Genes Chromosom Cancer 3:249

    Google Scholar 

  46. Cho KR, Vogelstein B (1992) Suppressor gene alterations in the colorectal adenoma-carcinoma sequence J Cell Biochem [Suppl] 16G:137–141

    Google Scholar 

  47. Zelenka PS (1990) Proto-oncogenes in cell differentiation. Bio Essays 12:22

    Google Scholar 

  48. Bryant PJ (1993) Towards the cellular function of tumour suppressors. Trends Cell Biol 3:31

    Google Scholar 

  49. Sherr CJ (1994) The ins and outs of RB: coupling gene expression to the cell cycle clock. Trends Cell Biol 4:15

    Google Scholar 

  50. Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266:1821

    Google Scholar 

  51. Stehelin D, Varmus HE, Bishop JM (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170

    Google Scholar 

  52. Bishop JM (1985) Viruses genes and cancer. II. Retroviruses and cancer genes. Cancer 55:2329

    Google Scholar 

  53. Slamon DJ (1987) Proto-oncogenes and human cancers. N Engl J Med 317:955

    Google Scholar 

  54. Bishop JM (1989) Oncogenes and clinical cancer. In: Weinberg RA (ed) Oncogenes and the molecular origin of cancer. 13 Cold Spring Harbour Laboratory Press, Cold Spring Harbour, p327

    Google Scholar 

  55. Roussel MF, Downing JR, Rettenmier CW, Sherr CJ (1988) A point mutation in the extracellulare domain of the human CSF-1 receptor (c-fms proto-oncogene product) activates its transforming potential. Cell 55:979

    Google Scholar 

  56. Albino AP, Nanus DM, Mentle IR, Cordon-Cardo C, McNutt NS, Bressler J, Andreeff M (1989) Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation tumor type. Oncogene 4:1363

    Google Scholar 

  57. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci 79:7824

    Google Scholar 

  58. Field JK, Spandidos DA (1990) The role of ras and myc oncogenes in human solid tumours and their relevance in diagnosis and prognosis. Anticancer Res 10:1

    Google Scholar 

  59. Brennan J, O'Connor T, Makuch RW, Simmons AM, Russell E, Linnoila RI, Phelps RM, Gazdar AF, Ihde DC, Jonhson BE (1991) Myc family DNA amplification in 107 tumors and tumor cell lines from patients with small cell lung cancer treated with different combination chemotherapy regimens. Cancer Res 51:1708

    Google Scholar 

  60. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD (1983) Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306:194

    Google Scholar 

  61. Prins J, de Vries EGE, Mulder NH (1993) The myc family of oncogenes and their prsence and importance in small cell lung carcinoma and other tumour types. Anticancer Res 13:1373

    Google Scholar 

  62. Varley JM, Swallow JW, Breammar WJ, Whittaker JL, Walker RA (1987) Alterations to either c-erbB-2 or c-myc proto-oncogenes in breast carcinomas correlate with poor short term prognosis. Oncogene 1:423

    Google Scholar 

  63. Berns EMJJ, Klijn JGM, van Putten WLJ, Staveren IL, Portengen H, Foekens JA (1992) c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res 52:1107

    CAS  PubMed  Google Scholar 

  64. Schwab M, Ellison J, Busch M, Rosenau W, Varmus HE, Bishop JM (1984) Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci 81:4940

    Google Scholar 

  65. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D (1985) Association of multiple copies of N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313:1111

    Google Scholar 

  66. Lüscher B, Eisenman RN (1990) New light on myc and myb. I. myc. Genes Dev 4:2025

    Google Scholar 

  67. Marcu KB, Bossone SA, Patel AJ (1992) Myc function and regulation. Annu Rev Biochemistry 61:809

    Google Scholar 

  68. Minks M, Di Vinci A, Bruno S, Geido E, Avignolo C, Giaretti W (1992) Interleukin-3 dependent c-myc protein expression during the cell cycle of murine mast cells. Cancer Lett 62:243

    Google Scholar 

  69. Evan GI, Littlewood TD (1993) The role of c-myc in cell growth. Curr Opin Gen Devel 3:44

    Google Scholar 

  70. Murkherjee B, Morgenbesser SD, De Pinho RA (1992) Myc family oncoprotein function through a common pathway to transform normal cells in culture: cross interference by Max and transacting dominant mutants. Genes Dev 6:1480

    Google Scholar 

  71. Sikora K, Evan G, Stewart J, Watson JV (1985) Detection of the c-myc oncogene product in testicular cancer. Br J Cancer 52:171

    Google Scholar 

  72. Watson JV, Stewart J, Evan G, Ritson A, Sikora K (1986) The clinical significance of flow cytometric c-myc oncoprotein quantitation in testicular cancer. Br J Cancer 52:171

    Google Scholar 

  73. Schofield PN, Engström W, Lee AJ, Biddle C, Graham CF (1987) Expression of the c-myc during differentiation of the human teratocarcinoma cell line Tera-2. J Cell Sci 88:57

    Google Scholar 

  74. Peltomäki P, Alfthan O, de la Chapelle A (1991) Oncogenes in human testicular cancer: DNA and RNA studies. Br J Cancer 63:851

    Google Scholar 

  75. Shuin T, Misaki H, Kubota Y, Yao M, Hosaka M (1994) Differential expression of protooncogenes in human germ cell tumors of the testis. Cancer 73:1721

    Google Scholar 

  76. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-Ki-ras genes. Cell 53:549

    CAS  PubMed  Google Scholar 

  77. Vogelstein B, Fearon ER, Hamilton SR 7 others (1988) Genetic alterations during colorectal-tumor developement. N Engl J Med 319:525

    CAS  PubMed  Google Scholar 

  78. Mulder MP, Keijzer W, Verkerk KA, Boot AJ, Prins ME, Splinter TA (1989) Activated ras genes in human seminoma: evidence for tumor heterogenity. Oncogene 4:1345

    Google Scholar 

  79. Ganguly S, Murty VV, Samaniego F, Reuter VE, Bosl GJ, Chaganti RS (1990) Detection of preferential NRAS mutations in human male germ cell tumors by the polymerase chain reaction. Genes Chromosom Cancer 1:228–232

    Google Scholar 

  80. Moul JW, Theune SM, Chang EH (1992) Detection of ras mutations in archival testicular germ cell tumors by polymerase chain reaction and oligonucleotide hybridization. Genes Chromosom Cancer 5:109

    Google Scholar 

  81. Wang L, Vass W, Gao C, Chang KSS (1987) Amplification and enhanced expression of the c-Ki-ras2 proto-oncogene in human embryonal carcinomas. Cancer Res 47:4192

    Google Scholar 

  82. Dmitrovsky E, Murty VVV, Moy D, Miller WH Jr, Nanus D, Albino AP Samaniego F, Bosl G, Chaganti RSK (1990) Isochromosome 12 p, i(12p), in male germ cell tumor (GCT) cell line: karyologic amplification of ki-ras2 without pointmutational activity. Oncogene 5:543

    Google Scholar 

  83. Yarden Y, Kuang W-J, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessingen J, Francke U, Ullrich A (1987) Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6:3341

    Google Scholar 

  84. Nocka K, Majumder S, Chabot B, Ray P, Cervone M, Bernstein A, Besmer P (1989) Expression of the c-kit gene products in known cellular targets of W mutations in normal and W mutant mice — evidence for an impaired c-kit kinase in mutant mice. Genes Dev 3:816

    Google Scholar 

  85. Tan JC, Nocka K, Ray P, Traktman P, Besmer P (1990) The dominant W42 phenotype results from a missens mutation in the c-kit receptor kinase. Science 247:209

    Google Scholar 

  86. Witte O (1990) Steel locus defines a new multipotent growth factor. Cell 63:5

    Google Scholar 

  87. Godin I, Deed R, Cooke J, Zsebo K, Dexter M, Wylie C (1991) Effects of the steel gene product on the mouse primordial germ cells in culture. Nature 352:807

    Google Scholar 

  88. Dolci S, Williams D, Ernst M, Resnik J, Brannan C, Lock L, Lyman S, Boswell H, Donovan P (1991) Requirements for the mast cell growth factor for primordial germ cell survival in culture. Nature 352:809

    Google Scholar 

  89. Roussel MF, Dull TJ, Rettenmier CW, Ralph P, Ullrich A, Sherr CJ (1987) Transforming potential of the c-fms proto-oncogene (CSF-1 receptor). Nature 325:549

    Google Scholar 

  90. Ridge SA, Worwood M, Oscar D, Jacobs A, Padua RA (1990) FMS mutations in myelodysplatic, leukemic and normal subjects. Proc Natl Acad Sci 78:1377

    Google Scholar 

  91. Qiu F, Ray P, Bronw K, Barker PE, Jhanwar S, Ruddel FH, Besmer P (1988) Primary structure of c-kit: relationship with the CSF-1/PDGF receptor kinase family — oncogene activation of v-kit involves deletion of extracellular domain and C-terminus. EMBO J 7:1007

    Google Scholar 

  92. Strohmeyer T, Reese D, Press M, Ackermann R, Hartmann M, Slamon D (1995) Expression of the c-kit proto-oncogen and its ligand “stem cell factor (SCF)” in normal and malignant human testicular tissue. J Urol 153:511

    Google Scholar 

  93. Strohmeyer T, Peter S, Hartmann M, Munemitsu S, Ackermann R, Ullrich A, Slamon D (1991) Expression of the hst-1 and c-kit proto-oncogenes in human testicular germ cell tumors. Cancer Res 51:1811

    Google Scholar 

  94. Tsuura Y, Hiraki H, Watanabe K, Igarashi S, Shimamura K, Fukuda T, Suzuki T, Seito T (1994) Preferential localization of c-kit product in tissue mast cells, basal cells of the skin, epithelial cells of the breast, small cell lung carcinoma, and seminoma/dysgerminoma in human: immunohistochemical study on formalin-fixed, paraffin embedded tissues. Virchows Arch 424:135

    Google Scholar 

  95. Geissler E, Liao M, Brook J, Martin F, Zsebo K, Housman D, Galli S (1991) Stem cell factor (SCF): a novel hemato-poietic growth factor and ligand for c-kit tyrosine kinase receptor, maps on human chromosome 12 between 12q14.3 and 12qter. Somat Cell Mol Genet 17:207

    Google Scholar 

  96. Sakamoto H, Mori M, Taira M, Yoshida T, Matsukawa S, Shimizu K, Sekiguchi M, Terada M, Sugimura T (1986) Transforming gene from human stomach cancers and a non-cancerous portion of stomach mucosa. Proc Natl Acad Sci 83:3997

    Google Scholar 

  97. Delli-Bovi P, Curatola AM, Kern FG, Greco A, Ittman M, Basilico C (1987) An oncogene isolated by transfection of Kaposi's sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell 50:729

    Google Scholar 

  98. Moore R, Casey G, Brooks S, Dixon M, Peters G, Dickson C (1986) Sequence topography and protein coding potential of the mouse int-2: a putative oncogene activated by mouse mammary tumor virus. EMBO J 5:919

    Google Scholar 

  99. Lidereau R, Callahan R, Dickson P, Peters G, Escot C, Ali IU (1988) Amplification of the int-2 gene in primary human breast tumors. Oncogene Res 2:285

    Google Scholar 

  100. Adelaide J, Mattei MG, Maries I, Raybaud F, Planche T, De Lapeyriere O, Birnbaum D (1988) Chromosomal localisation of the hst-1 oncogene and its coamplification with the int-2 oncogene in human melanomas. Oncogene 2:413

    Google Scholar 

  101. Theillet C, Le Roy X, De Lapeyriere O, Grsgeorges J, Adnane J, Raynaud SD, Simony-Lafontaine J, Goldfarb M, Escot C, Birnbaum D (1989) Amplification of FGF-related genes in human tumours: possible involvement of HST in breast carcinomas. Oncogene 4:915

    Google Scholar 

  102. Yoshida T, Tsutsumi M, Sakamoto H, Miyagawa K, Teshima S, Sugimura T, Terada M (1988) Expression of the hst-1:oncogene in human germ cell tumors. Biochem Biophys Res Comm 155:1324

    Google Scholar 

  103. Schlechter AL, Stern DF, Valdyananthan L, Decker SJ, Drebin JA, Greene MI, Weinberg RA (1984) The neu oncogene: An erbB related gene encoding a 185,000-Mr tumor antigen. Nature 312:513

    Google Scholar 

  104. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tarn AW, Lee J, Yarden J, Libermann TA, Schlessinger J, Downward J, Mayes ELV, Whittle N, Waterfield MD, Seeburg PH (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418

    CAS  PubMed  Google Scholar 

  105. Bargemann CI, Hung HC, Weinberg RA (1986) The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 319:226

    Google Scholar 

  106. Slamon DJ, Clark CM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177

    Google Scholar 

  107. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A (1989) Studies of HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707

    CAS  PubMed  Google Scholar 

  108. Tesch H, Fürbass R, Casper J et al (1990) Cellular oncogenes in human teratocarcinoma cell lines. Int J Androl 13:377

    Google Scholar 

  109. Klein G (1987) The approaching aera of tumor suppressor genes. Science 238:1539

    Google Scholar 

  110. Weinberg (1991) Tumor suppressor genes. Science 254:1138

    Google Scholar 

  111. Knudson AG (1971) Mutation and cancer: statistical study of the retinoblastoma. Proc Natl Acad Sci 68:820

    PubMed  Google Scholar 

  112. Benedict WF, Murphee ALM, Banerjee A, Spina BA, Sparkes MC, Sparkes RS (1983) Patients with13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science 219:973

    Google Scholar 

  113. Craig RW, Sager R (1985) Suppression of tumourigenicity in hybrids of normal and oncogene transformed CHEF cells. Proc Natl Acad Sci 82:2062

    Google Scholar 

  114. Harris H (1988) The analysis of malignancy by cell fusion: the position in 1988. Cancer Res 48:3302

    Google Scholar 

  115. Dowdy SF, Fashing CL, Araujo D, Lai K,-M Livanos E, Weissman B, Stanbridge EJ (1991) Suppression of tumorgenicity in Wilms tumor by the p15,5-p14 region of chromosome 11. Science 254:293–295

    Google Scholar 

  116. Lasko D, Cavenee W, Nordenskjöld M (1991) Loss of constitutional heterozygosity in human cancer. Annu Rev Genet 25:281

    Google Scholar 

  117. Levine A (1993) The tumour suppressor genes. Annu Rev Biochem 2:623

    Google Scholar 

  118. O'Rourke RW, Miller CW, Kato GJ, Simon KJ, Chen DL, Dang CV, Koeffler HP (1990) A potentional transcriptional activation element in the p53 protein. Oncogene 5:1829

    Google Scholar 

  119. Fields S, Jang SK (1990) Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046

    Google Scholar 

  120. Ginsber D, Mechta F, Yaniv M, Oren M (1991) Wild-type p53 can down modulate the activity of a various promoters. Proc Natl Acad Sci 88:9979

    Google Scholar 

  121. Levine A, Momand J, Finlay CA (1991) The p53 tumor suppressor gene. Nature 351:453

    Google Scholar 

  122. Vogelstein B, Kinzler K (1992) p53 function and dysfunction. Cell 70:523

    Google Scholar 

  123. Fields S, Jang SK (1990) Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046

    Google Scholar 

  124. Liu X, Miller CW, Koeffler PH, Berk AJ (1993) The p53 activation domain binds the TATA-box binding polypeptide in holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol Cell Biolo 13:3291

    Google Scholar 

  125. El-Deiry WS et al (1994) WAF/Cip 1 is induced in p 53 mediated G(1) arrest and apoptosis. Cancer Res 54:1169

    Google Scholar 

  126. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Fornace AJ (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD 45 is defective in ataxia telangiectasia. Cell 71:587

    Google Scholar 

  127. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci 89:7491

    CAS  PubMed  Google Scholar 

  128. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation induced apoptosis in mice thymocytes. Nature 362:847

    Google Scholar 

  129. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CL, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849

    Article  CAS  PubMed  Google Scholar 

  130. Vogelstein B (1990) Cancer: a deadly inheritance. Nature 348:681

    Google Scholar 

  131. Milner J (1991) A conformation hypothesis for the suppressor and promoter functions of p53 in cell growth and cancer Proc R Soc Lond [Biol] 245:139

    Google Scholar 

  132. Milner J (1991) The role of p53 in the normal control of cell proliferation. Curr Opin Cell Biol 3:282

    Google Scholar 

  133. Hinds PW, Finlay CA, Quartin RS, Baker SJ, Fearson ER, Vogelstein B, Levine AJ (1990) Mutant p53 cDNAs from human colorectal carcinomas can cooperate with ras in transformation of primary rat cells. Cell Growth Diff 1:571

    Google Scholar 

  134. Eliyahu D, Goldfinger N, Pinhashi-Kimhi O, Shaulsky G, Skurmik J, Arai N, Rotter V, Oren M (1988) Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 3:313

    Google Scholar 

  135. Donehowere LA, Bradley A (1993) The tumor suppressor p53. Biochem Biophys Acta 1155:181

    Google Scholar 

  136. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers Science. 253:49

    CAS  PubMed  Google Scholar 

  137. Bartek J, Bartkova J, Vojtesek B, Staskova Z, Lukas J, Rejthar A, Kovarik J, Midgley CA, Gannon JV, Lane DP (1991) Aberrant expression of the p53 oncogene is a common feature of a wide spectrum of human malignancies. Oncogene 6:1699

    CAS  PubMed  Google Scholar 

  138. Bartkova J, Bartek J, Lukas J, Vojtesek B, Staskova Z, Kovarik J, Midgley CA, Lane DP (1991) p53 interactions in human testicular cancer including pre-invasive intratubular germ cell neoplasia. Int J Cancer 49:196

    Google Scholar 

  139. Peng H-Q, Hogg D Malkin D, Bailey D, Gallie BL, Bulbul M, Jewett M Buchanan J, Goss PE (1993) Mutations of the p53 gene do not occur in testis cancer. Cancer Res 53:3574

    Google Scholar 

  140. Fleischhacker M, Strohmeyer T, Imai Y, Slamon DJ, Koeffler HP (1994) Mutations of the p53 gene are not detectable in human testicular cancer. Mod Pathol 7:435

    Google Scholar 

  141. Murty VVVS, Bosl GJ, Houldsworth J, Meyers M, Mukherjee AB, Reuter V, Chaganti RSK (1994) Allelic loss and somatic differentiation in human germ cell tumors. Oncogene 9:2245

    Google Scholar 

  142. Schmidt B, Ackermann R, Strohmeyer T (1995) Expression of the c-myc proto-oncogene and its transcription factor NM 23-PuF in testicular tumors. J Urol 153:308A

  143. Mommand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237

    Google Scholar 

  144. Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EJH, (1987) Human retinoblastoma susceptibility gene: cloning identification and sequence. Science 237:1394

    Google Scholar 

  145. Lindardopoulos S, Gonos ES, Spandidos DA (1993) Abnormalities of retinoblastom gene structure in human lung tumours. Cancer Lett 71:67

    Google Scholar 

  146. Ozaki T, Ikeda S, Kawai A, Inoue H, Oda T (1993) Alterations of the retinoblastoma suscepible gene accompanied by c-mcy amplification in human bone and soft tissue tumors. Cell Mol Biol 39:235

    Google Scholar 

  147. Hamel W, Westphal M, Shepard HM (1993) Loss in the expression of the retinoblastoma gene product in human gliomas is associated with advanced disease. J Neurooncol 16

  148. Xu HJ, Cairns P, Hu SX, Knowles MA, Benedict WF (1993) Loss of RB protein expression in primary bladder cancer correlates with loss of heterozygosity at the RB locus and tumour progression. Int J Cancer 53:781

    CAS  PubMed  Google Scholar 

  149. Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258:424

    Google Scholar 

  150. Horrowitz JM (1993) Regulation of transcription by the retinoblastoma protein. Genes Chromosom Cancer 6:124

    Google Scholar 

  151. Strohmeyer T, Reissmann P, Cordon-Cardo C, Hartmann M Ackermann R, Slamon DJ (1991) Correlation between retinoblastoma gene expression and differentiation in human testicular tumors. Proc Natl Acad Sci 88:6662

    Google Scholar 

  152. Steeg PS, Bevilaqua G, Kopper K, Thorgeirsson UP, Talmadge JE, Liotta LA, Sobel ME (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80:200

    Google Scholar 

  153. Bevilaqua G, Sobel ME Liotta LA, Steeg PS (1989) Association of low nm23 RNA levels in human primary infiltrating ductal breast carcinomas with lymph node involvement and other histopathological indicators of high metastatic potential. Cancer Res 49:5185

    Google Scholar 

  154. Hennessy C, Henry JA, May FEB, Westly BR, Angus B, Lennard TWJ (1991) Expression of the antimetastatic gene nm23 in human breast cancer: an association with good prognosis. J Natl Cancer Inst 83:281

    Google Scholar 

  155. Barnes R, Masood S, Barker E, Rosengard AM Coggin DL, Crowell T, King CR, Porter-Jordan K, Wargotz ES, Liotta LA, Steeg PS (1991) Low nm23 protein expression in infiltrating ductal breast carcinomas correlates with reduced patient survival. Am J Pathol 139:245

    Google Scholar 

  156. Igawa M, Rukstalis DB, Tanabe T, Chodak GW (1994) High levels of nm23 expression are related to cell proliferation in human prostate cancer. Cancer Res 54:1313

    Google Scholar 

  157. Zou M, Shi Y, al-Sedairy S, et al (1993) High levels of nm23 gene expression in advanced stage of thyroid carcinomas. Br J Cancer 68:385

    Google Scholar 

  158. Engel M, Theisinger B, Seib T, et al (1993) High levels of nm 23 in human squamous-cell lung carcinoma are associated with poor differentiation and advanced tumor stage. Int J Cancer 55:375

    Google Scholar 

  159. Haut M, Steeg PS, Wilson JKV, Markowitz SD (1991) Induction of the nm23 gene expression in human colonic neoplasms and equal expression in human colon tumors of high and low metastatic potential. J Natl Cancer Inst 83:712

    Google Scholar 

  160. Myeroff LL, Markowitz SD (1993) Increased nm23-H1 and nm23-H2 messenger RNA expression and absence of mutations in colon carcinomas of low and high metastatic potential. J Natl Cancer Inst 85:147

    Google Scholar 

  161. Hailat N, Keim DR, Melhem RD, Zhu X, Eckerskorn C, Brodeur GM, Reynolds CP, Seeger RC, Lottspeich F, Strahler JR, Hanash SM (1991) High levels of p19/nm23 protein in neuroblastoma are associated with advanced disease and with N-myc gene amplification. J Clin Invest 88:341

    Google Scholar 

  162. Chang CL, Zhu X-X, Thoraval DH. Ungar D, Rawwas J, Hora N, Strahler JR, Hanash SM (1994) nm 23-H1 mutation in neuroblastoma. Nature 370:335

    Google Scholar 

  163. Stahl JA, Leone A, Rosengard AM, Porter L, King CR, Steeg PS (1991) Identification of a second human nm23 gene nm23-H2. Cancer Res 51:445

    Google Scholar 

  164. Howlett AR, Petersen OW, Steeg PS, Bissell MJ (1994) A novel function for the nm23-H1 gene: overexpression in human breast carcinoma cells leads to the formation of basement membrane and growth arrest. J Natl Cancer Inst 86:1838

    Google Scholar 

  165. Postel EH, Berberich SJ, Flint SJ, Ferrone CA (1993) Human c-myc transcription factor PuF identified as nm23 H-2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science 261:478

    Google Scholar 

  166. Peltomäki P, Halme A, de la Chapelle A (1990) Human testicular cancer changes in autosomal dosis. Cancer Genet Cytogenet. 48:1

    Google Scholar 

  167. Lothe RA, Fossa SD, Stenwig AE, Nakamura Y, White R, Borrensen AL, Brogger A (1989) Loss of 3p and 11p alleles is associated with testicular cancer tumors. Genomics 5:134

    Google Scholar 

  168. Radice P, Pierotti MA, Lacerenza S, Mondini P, Radiee MT, Pilotti S, Della Porta G (1989) Loss of heterozygosity in human germinal tumors Cytogenet Cell Genet. 52:72

    Google Scholar 

  169. Looijenga LHJ, Abraham M, Gills AJM, Saunders GF, Oosterhuis JW (1994) Testicular germ cell tumors of adults show deletion of chromosomal bands 11p13 and 11p15.5, but no abnormalities within the zinc-finger regions and exons 2 and 6 of the Wilms tumor I gene. Genes Chromosom Cancer 9:153

    Google Scholar 

  170. Ton CC, Huff V, Call KM, Cohn S, Strong LC, Housman DE, Saunders GF (1990) Smallest region of overlap in Wilms tumor deletions uniquely implicated an 11p13 zinc finger gene as the disease locus. Genomics 10:293

    Google Scholar 

  171. Slater RM, and Mannens MMAM (1992) Cytogenetics and molecular genetics of Wilms' tumor in childhood. Cancer Genet Cytogenet 61:111

    Google Scholar 

  172. Baird NP, Groves N, Haber DA Housman DE, Cowell JK (1992) Identification of mutations in the WT 1 gene in tumours from patients with the WAGR syndrome. Oncogene 7:2141

    Google Scholar 

  173. Brown KW, Watson JE Poirier V, Mott MG, Berry PJ, Mailland NJ (1992) Inactivation of the remaining allele of the WT1 gene in a Wilms tumor from a WAGR patient. Oncogene 7:763

    Google Scholar 

  174. Razin A, Szyf M (1984) DNA methylation patterns Formation and function. Biochim Biophys Acta 782:331

    Google Scholar 

  175. Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, Migeon BR (1984) Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X-chromosome: implications for X-chromosome inactivalion. Proc Natl Acad Sci 81:2806

    Google Scholar 

  176. Feinberg AP, Vogelstein B (1983) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111:47

    Google Scholar 

  177. Jones PA, Buckley JD (1990) The role of DNA methylation in cancer. Adv Cancer Res 54:1

    Google Scholar 

  178. Peltomäki P (1991) DNA methylation changes in human testicular cancer. Biochim Biophys Acta 1069:187

    Google Scholar 

  179. Bartolomei MS, Zemel S, Tighman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153

    Google Scholar 

  180. Zhang Y, Tycko B (1992) Monoallelic expression of the human H19 gene. Nature Genet 1:40

    Google Scholar 

  181. DeChiara TM, Robertson EJ, Efstradiadis A (1991) Parenlal imprinting of the mouse insulin-like growth factor II gene. Cell 64:849

    Google Scholar 

  182. Sasaki H, Jones PA, Chaillot JR, Ferguson-Smith A-C, Barton SC, Reik W, Surani MA (1992) Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf 2) gene. Genes Dev 5:1843

    Google Scholar 

  183. Ferguson-Smith AC, Sasaki H, Cattanach BM, Surani MA (1993) Parental-origin specific epigenetic modification of the mouse H19 gene. Nature 362:751

    Google Scholar 

  184. Bartolomei MS, Webber AL, Brunkow ME, Tilghman SM (1993) Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev 7:1663

    Google Scholar 

  185. Surani MA (1993) Silence of the genes. Nature 366:302

    Google Scholar 

  186. Li E, Beard C, Jaenisch R (1993) Role of DNA methylation in genomic imprinting. Nature 366:362

    Google Scholar 

  187. van Gurp RJHLM, Ooslerhuis JW, Kalscheuer V, Mariman ECM, Looijenga LHJ (1995) Biallelic expression of the H19 and IGF-2 genes in human testicular germ cell tumors. J Nat Cancer Inst (in press)

  188. Drummond IA, Madden SL, Rohwer-Nutter P, Bell GI, Sukhatme VP, Rauscher FJ (1992) III. Repression of the insulin-like growth factor II gene by the Wilms' tumor suppressor WT1. Science 257:674

    Google Scholar 

  189. Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ, Reeve, AE (1993) Relaxation of insulin-like growlh factor II gene imprinting implicated in Wilms' tumour. Nature 362:749

    Google Scholar 

  190. Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP (1993) Relaxation of imprinted genes in human cancer. Nature 362:74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, B., Ackermann, R. & Strohmeyer, T. Molecular biology of testicular germ cell tumors: current status. J Mol Med 73, 355–367 (1995). https://doi.org/10.1007/BF00192887

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192887

Key words

Navigation