Skip to main content
Log in

The role ofCandida albicans secreted aspartic proteinase in the development of candidoses

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

AlthoughCandida albicans infections in humans are increasingly frequent, our understanding of the host-parasite relationship is limited. The secreted aspartic proteinase ofC. albicans was first described in 1965 and has proved to be a major factor in virulence. This enzyme belongs to the class of aspartic proteinases which includes pepsin and renin in humans. Although found in some fungi, secreted aspartic proteinase is rare in these organisms. While the existence of several isoenzymes may not be fully established, it is now obvious that at least seven different genes encode for secreted aspartic proteinase. WithinCandida cells it is located in membrane-bound vesicles. Upon fusion of these subcellular structures within the plasma membrane, the enzyme is released to the environment. In the context of human mucosal diseases it is responsible both for adhesion and invasion. Strains from HIV-infected patients with oral candidosis generally exhibit higher enzymatic activity than control strains. In future secreted aspartic proteinase may prove a prime target for new types of antimycotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Staib F (1965) Serum proteins as nitrogen source for yeast-like fungi. Sabouraudia 4:187–193

    Google Scholar 

  2. Odds FC (1985)Candida albicans proteinase as a virulence factor in the pathogenesis ofCandida infections. Zentralbl Bakt Hyg Orig A 260:539–542

    Google Scholar 

  3. Rüchel R (1981) Properties of a purified proteinase from the yeastCandida albicans. Biochim Biophys Acta 659:99–113

    Google Scholar 

  4. Monod M, Togni G, Hube B, Sanglard D (1994) Multiplicity of genes encoding secreted aspartic proteinases inCandida species. Mol Microbiol 13:357–368

    Google Scholar 

  5. Remold H, Fasold H, Staib F (1968) Purification and characterization of a proteolytic enzyme fromCandida albicans. Biochim Biophys Acta 167:399–406

    Google Scholar 

  6. Ganesan K, Banerjee A, Datta A (1991) Molecular cloning of the secretory acid proteinase gene fromCandida albicans and its use as a species-specific probe. Infect Immun 59:2972–2977

    Google Scholar 

  7. Hube B, Turver CJ, Odds F, Eifert H, Boulnois GJ, Kochel H, Rüchel R (1991) Sequence of theCandida albicans gene encoding the secretory aspartate proteinase. J Med Vet Mycol 29:129–132

    Google Scholar 

  8. Morrow B, Srikantha T, Soll DR (1992) Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching inCandida albicans. Mol Cell Biol 12:2997–3005

    Google Scholar 

  9. Wright RJ, Carne A, Hieber AD, Lamont IL, Emerson GW, Sullivan PA (1992) A second gene for a secreted aspartate proteinase inCandida albicans. J Bacteriol 174:7848–7853

    Google Scholar 

  10. Magee BB, Hube B, Wright RJ, Sullivan P, Magce PT (1993) The genes encoding the secreted aspartyl proteinases ofCandida albicans constitute a family with at least three members. Infect Immun 61:3240–3243

    Google Scholar 

  11. White TC, Miyasaki SH, Agabian N (1993) Three distinct secreted aspartyl proteinases inCandida albicans. J Bacteriol 175:2997–3005

    Google Scholar 

  12. Miyasaki SH, White TC, Agabian N (1994) A fourth secreted aspartyl proteinase gene (SAP4) and a CARE2 repetitive element located upstream of the SAP1 gene inCandida albicans. J Bacteriol 176:1702–1710

    Google Scholar 

  13. Hube B, Monod M, Schofield DA, Brown AJP, Gow NAR (1994) Expression of seven members of the gene family encoding secretory aspartyl proteinases inCandida albicans. Mol Microbiol 14:87–99

    Google Scholar 

  14. Kwon-Chung KJ, Lehman D, Good C, Magee PT (1985) Genetic evidence for role of extracellular proteinase in virulence ofCandida albicans. Infect Immun 49:571–575

    Google Scholar 

  15. MacDonald F, Odds FC (1983) Virulence for mice of a proteinase-secreting strain ofCandida albicans and a proteinase-deficient mutant. J Gen Microbiol 129:431–438

    Google Scholar 

  16. MacDonald F, Odds FC (1980) Inducible proteinase ofCandida albicans in diagnostic serology and in the pathogenesis of systemic candidosis. J Med Microbiol 13:423–435

    Google Scholar 

  17. Rüchel R (1983) On the role of proteinases fromCandida albicans in the pathogenesis of acronecrosis. Zentralbl Bakt Hyg Orig A 255:524–536

    Google Scholar 

  18. Borg M, Watters D, Reich B, Rüchel R (1988) Production and characterization of monoclonal antibodies against secretory proteinase ofCandida albicans CBS 2730. Zentralbl Bakt Mikrobiol Hyg A 268:62–73

    Google Scholar 

  19. Calderone RA, Braun PC (1991) Adherence and receptor relationship ofCandida albicans. Microbiol Rev 55:1–20

    Google Scholar 

  20. El-Maghrabi FA, Dixon DM, Burnett JW (1990) Characterization ofCandida albicans epidermolytic proteases and their role in yeast-cell adherence to keratinocytes. Clin Exp Dermatol 15:183–191

    Google Scholar 

  21. Ray TL, Payne CD (1990) Comparative production and rapid purification ofCandida acid proteinase from protein-supplemented cultures. Infect Immun 58:504–518

    Google Scholar 

  22. Cassone A, De Bernardis F, Mondello F, Ceddia T, Agatensi L (1987) Evidence for a correlation between proteinase secretion and vulvovaginal candidosis. J Infect Dis 156:777–783

    Google Scholar 

  23. De Bernardis F, Agatensi L, Ross IK, Emerson GW, Lorenzini R, Sullivan PA, Cassone A (1990) Evidence for a role for secreted aspartate proteinase ofCandida albicans in vulvovaginal candidiasis. J Infect Dis 161:1276–1286

    Google Scholar 

  24. De Bernardis F, Boccanera M, Rainaldi L, Guerra CE, Quinti I, Cassone A (1992) The secretion of aspartyl proteinase a virulence enzyme by isolates ofCandida albicans from the oral cavity of HIV-infected subjects. Eur J Epidemiol 8:362–367

    Google Scholar 

  25. Ollert MW, Korting HC, Wende C, Görlich M, McMullan, Vogel CG, Borg-von Zepelin M, Vogel CW (1995) Increased expression ofCandida albicans secretory proteinase, a putative virulence factor, in isolates from human immunodeficiency virus-positive patients. J Clin Microbiol 33:2543–2549

    Google Scholar 

  26. Barrett AJ (1980) Introduction: the classification of proteinases. In: Symposium on protein degradation in health and disease, vol 75. Ciba Foundation. Excerpta Medica, Amsterdam, pp 1–13

    Google Scholar 

  27. Ward M, Kodama KH (1991) Introduction to fungal proteinases and expression in fungal systems. In: Dunn BM (ed) Structure and function of the aspartatic proteinases. Plenum, New York, pp 149–160

    Google Scholar 

  28. Antonov VK, Ginodman LM, Kapitannikov YV, Barshevskaya TN, Gurova AG, Rumsh LD (1978) Mechanisms of pepsin catalysis — general base catalysis by active-site carboxylate ion. FEBS Lett 88:87–90

    Google Scholar 

  29. Takahashi K, Channd WJ, Ko JS (1974) Specific inhibition of acid proteases from brain, kidney, sceletal muscle, and insectivorous plants by diazoacetyl-Dl-norleucine methyl ester and by pepstatin. J Biochem 76:897–899

    Google Scholar 

  30. Banerjce A, Ganesan K, Datta A (1991) Induction of secretory acid proteinase inCandida albicans. J Gen Microbiol 137:2455–2461

    Google Scholar 

  31. Rüchel R, Böning, Borg M (1986) Characterization of a secretory proteinase ofCandida parapsilosis and evidence for the absence of the enzyme during infection in vitro. Infect Immun 53:411–419

    Google Scholar 

  32. MacDonald F (1984) Secretion of inducible proteinase by pathogenicCandida species. Sabouraudia 22:79–82

    Google Scholar 

  33. Rüchel R, Uhlemann K, Boning B (1983) Secretion of acid proteinases by different species of the genusCandida. Zentralbl Bakt Hyg Orig A 255:537–548

    Google Scholar 

  34. Borg M, Rüchel R (1988) Expression of extracellular acid proteinase by proteolyticCandida spp. during experimental infection of oral mucosa. Infect Immun 56:626–631

    Google Scholar 

  35. Yamamoto T, Nohara K, Uchida K, Yamaguchi H (1992) Purification and characterization of the secretory proteinase ofCandida albicans. Microbiol Immunol 36:637–664

    Google Scholar 

  36. Andreeva VS, Gustchina AE (1979) On the super secondary structure of acid proteinases. Biochem Biophys Res Commun 87:32–42

    Google Scholar 

  37. Rüchel R, Tegeler R, Trost A (1982) A comparison of secretory proteinases from different strains ofCandida albicans. Sabouraudia 20:233–244

    Google Scholar 

  38. Lott TJ, Page LS, Boiron P, Benson J, Reiss E (1989) Nucleotide sequence of theCandida albicans aspartyl proteinase gene. Nucleic Acids Res 17:1779

    Google Scholar 

  39. Staib F (1969) Proteolysis and pathogenicity ofCandida albicans strains. Mycopathol Mycol Appl 37:345–348

    Google Scholar 

  40. Ross IK, De Bernardis F, Emerson GW, Cassone A, Sullivan PA (1990) The secreted aspartate proteinase ofCandida albicans: physiology of secretion and virulence of a proteinase-deficeient mutant. J Gen Microbiol 136:687–694

    Google Scholar 

  41. Ray TL, Payne CD (1988) Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role forCandida acid proteinase. Infect Immun 56:1942–1949

    Google Scholar 

  42. Homma M, Kanbe T, Hiroji C, Tanak K (1991) Detection of intracellular forms of secretory aspartic proteinase inCandida albicans. J General Microbiol 138:627–633

    Google Scholar 

  43. MacDonald F, Odds FC (1980) PurifiedCandida albicans proteinase in the serological diagnosis of systemic candidosis. J Am Med Assoc 241:2409–2411

    Google Scholar 

  44. Rüchel R, Böning-Stutzer B, Mari A (1988) A synoptical approach to the diagnosis of candidosis, relying on serological antigen and antibody tests, on culture, and on evaluation of clinical data. Mycoses 31:87–106

    Google Scholar 

  45. Rüchel R (1986) Cleavage of immunoglobulins by pathogenic yeasts of the genusCandida. Microbiol Sci 3:316–319

    Google Scholar 

  46. Budtz-Jörgensen E (1974) Proteolytic activity ofCandida spp. as related to the pathogenesis of denture stomatitis. Sabouraudia 12:266–271

    Google Scholar 

  47. Germaine GR, Tellefson LM (1981) Effect of pH and human saliva on protease production byCandida albicans. Infect Immun 31:323–326

    Google Scholar 

  48. Odds FC, Abbott AB, Stiller RL, Scholer HJ, Polak A, Stevens DA (1983) Analyses ofCandida albicans phenotypes from different geographical and anatomical sources. J Clin Microbiol 18:849–857

    Google Scholar 

  49. Burnie JP, Odds FC, Lee W, Webster C, Williams JD (1985) Outbreak of systemicCandida albicans in an intensive care unit caused by cross infection. Br Med J 290:746–748

    Google Scholar 

  50. Schreiber B, Lyman CA, Gurevich J, Needham CA (1985) Proteolytic activity ofCandida albicans and other yeasts. Diagn Microbiol Infect Dis 3:1–5

    Google Scholar 

  51. Ghannoum M, Abu Elteen K (1986) Correlative relationship between proteinase production, adherence and pathogenicity of various strains ofCandida albicans. J Med Vet Mycol 24:407–413

    Google Scholar 

  52. Ollert MW, Söhnchen R, Korting HC, Ollert U, Bräutigam S, Bräutigam W (1993) Mechanism of adherence ofCandida albicans to cultured human epidermal keratinocytes. Infect Immun 61:4560–4568

    Google Scholar 

  53. Kennedy MJ (1988) Adhesion and association mechanisms ofCandida albicans. In: McGinnis MR (ed) Current topics in medical mycology. Springer, Berlin Heidelberg New York, pp 73–169

    Google Scholar 

  54. Negi M, Tsuboi R, Matsui T, Ogawa H (1984) Isolation and characterization of proteinase fromCandida albicans. J Invest Dermatol 83:32–36

    Google Scholar 

  55. Odds FC (1988)Candida and candidosis, 2nd edn. Leicester University Press, Leicester

    Google Scholar 

  56. Kaminishi H, Tanaka M, Cho T, Maeda H, Hagihara Y (1990) Activation of the plasma kallikren-kinin system byCandida albicans proteinase. Infect Immun 58:2139–2143

    Google Scholar 

  57. Rüchel R (1983) On the renin-like activity ofCandida proteinases and activation of blood coagulation in vitro. Zentralbl Bakt Hyg Orig A 255:368–379

    Google Scholar 

  58. Rüchel R, De Bernardis F, Ray TL, Sullivan PA, Cole GT (1992)Candida acid proteinase. J Med Vet Mycol 30 [Suppl]:123–132

    Google Scholar 

  59. Borg-von Zepelin M, Grüness V (1993) Characterization of two monoclonal antibodies against secretory proteinase ofCandida tropicalis DSM 4238. J Med Vet Mycol 31:1–15

    Google Scholar 

  60. Epstein JB, Kimura LH, Menard TW, Truelove EL, Pearsall NN (1982) Effects of specific antibodies on the interaction between the fungusCandida albicans and human oral mucosa. Arch Oral Biol 27:469–474

    Google Scholar 

  61. Akiyama K, Yasueda H, Mitta H, Yanagihara Y, Kaneko F, Maeda Y, Hayakawa T, Hesegawa M, Shida T, Yamamoto T (1993) The allergic reaction to acid protease released byCandida albicans. Aerugi 42:1628–1632

    Google Scholar 

  62. Neely AN, Orloff MM, Holder IA (1992)Candida albicans growth studies: a hypothesis for the pathogenesis ofCandida infections in burns. J Burn Care Rehabil 13:323–329

    Google Scholar 

  63. Samaranayake LP, Hughes A, MacFarlane TW (1984) The proteolytic potential ofCandida albicans in human saliva supplemented with glucose. J Med Microbiol 17:13–22

    Google Scholar 

  64. Olsen I, Birkeland JM (1975) Assessment of denture plaque pH in subjects with and without denture stomatitis. Scand J Dental Res 83:370–374

    Google Scholar 

  65. Olsen I, Birkeland JM (1976) Initiation and aggravation of denture stomatitis by sucrose rinses. Scand J Dental Res 84:94–97

    Google Scholar 

  66. Quinti I, Palma C, Guerra EC, Gomez MJ, Mezzaroma I, Aiuti F, Cassone A (1991) Proliferative and cytotoxic responses to mannoproteins ofCandida albicans by peripheral blood lymphocytes of HIV-infected subjects. Clin Exp Immunol 85:485–492

    Google Scholar 

  67. Katoh I, Ysunga T, Ikawa Y, Yoshinaka Y (1987) Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor. Nature 329:654–656

    Google Scholar 

  68. Rüchel R, Ritter B, Schaffrinski M (1990) Modulation of experimental systemic murine candidosis by intravenous pepstatin. Int J Med Microbiol 273:391–403

    Google Scholar 

  69. Sato T, Nagai K, Shibazaki M, Abe K (1994) Novel aspartyl protease inhibitors, YF-0200R-A and B. J Antibiot 47:566–570

    Google Scholar 

  70. Sato T, Shibazaki M, Yamaguchi H, Abe K (1994) NovelCandida albicans aspartyl protease inhibitor. II. A new pepstatin-Ahpatinin group inhibitor, YF-044-D. J Antibiot 47:588–590

    Google Scholar 

  71. Warnock DW (1992) Azole drug resistance inCandida species. J Med Microbiol 37:225–226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoegl, L., Ollert, M. & Korting, H.C. The role ofCandida albicans secreted aspartic proteinase in the development of candidoses. J Mol Med 74, 135–142 (1996). https://doi.org/10.1007/BF01575445

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01575445

Key words

Navigation