Skip to main content
Log in

Rye cytology, cytogenetics and genetics — current status

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Progress in rye karyology is reviewed with respect to chromosome structure, recognition and chromosome nomenclature. Considerable contributions have been brought about by molecular techniques which have even revealed nucleotide sequences of some of the ribosomal DNA. DNA sequence organization correlates with the distribution of major Giemsa C-band regions as well as with N-bands and the binding sites of fluorescent dyes. The several banding patterns permit the classification of rye chromosomes. The increased data and widespread application of banding analysis require a consistent system of chromosome and/or band designation. Therefore, a standard band nomenclature is proposed with reference to the recommendations of the “Paris Conference on Standardization in Human Cytogenetics”. In addition, advances in genetics are summarized and discussed. Based on the original accepted standard karyogram and banding patterns of the rye chromosomes, meanwhile, 120 genes determining several characters have been associated with individual chromosomes and/or chromosome arms, including linkage studies for about 19 arrangements. Most results were obtained using wheat-rye addition lines as well as test crosses with defined translocations. Moreover, genetical studies based on appropriate trisomic and telotrisomic material resulted in the localization of 19 genes, including their linkage relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminium tolerance in wheat, rye and triticale. Can J Genet Cytol 26:701–706

    Google Scholar 

  • Appels R (1982) The molecular cytology of wheat-rye hybrids. Rev Cytol 80:93–132

    Google Scholar 

  • Appels R (1983) Chromosome structure in cereals: the analysis of regions containing repeated sequence DNA and its application to the detection of alien chromosomes introduced into wheat. In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic engineering in plants. Plenum Press, New York, pp 229–256

    Google Scholar 

  • Appels R, Moran LB (1984) Molecular analysis of alien chromatin introduced into wheat. In: Gustafson JP (ed) Proc 16th Stadler Genet Symp, Gene manipulation in plant improvement. Columbia, pp 529–558

  • Appels R, Driscoll C, Peacock WJ (1978) Heterochromatin and highly repeated DNA sequences in rye (Secale cereale). Chromosoma 70:67–89

    Google Scholar 

  • Appels R, Dennis ES, Smyth DR, Peacock WJ (1981) Two repeated DNA sequences from the heterochromatic regions of rye (Secale cereale) chromosomes. Chromosoma 84:265–277

    Google Scholar 

  • Artyomova NV (1982) Chromosomal control of alcohol dehydrogenase, esterase and beta-amylase isoenzymes in different rye cultivars. Genetika, Moscow 18:661–668

    Google Scholar 

  • Balkandschiewa J, Mettin D (1974) Morphologie und Zytologie der primären Trisome des Winterroggens ‘Danae’. Arch Züchtungsforsch 4:19–28

    Google Scholar 

  • Barber HN, Driscoll CJ, Long PM, Vickery RS (1969) Gene similarity of the Triticinae and the study of segmental interchanges. Nature 22:897–898

    Google Scholar 

  • Bartos P, Bares I (1971) Leaf and stem rust resistance of hexaploid wheat cultivare ‘Salzmuender Bartweizen’ and ‘Weique’. Euphytica 20:435–440

    Google Scholar 

  • Bedbrock JR, Jones J, O'Dell M, Thompson RD, Flavell RB (1980) A molecular describtion of telomeric heterochromatin in Secale species. Cell 19:545–560

    Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts on angiosperms. Philos Trans R Soc London 274:227–274

    Google Scholar 

  • Bernard M, Autran JC, Joudrier P (1977) Possibilitrs d'identification de certaine chromosomes de seigle a l'aide de marqueurs biochemiques. Ann Amelior Plant 27:355–362

    Google Scholar 

  • Chang TD (1975) Mapping of the gene for hairy peduncle (Hp) on rye chromosome 5R. Can J Genet Cytol 17:127–128

    Google Scholar 

  • Chenicek KJ (1984) Evidence for the genetic control and subcellular location of aconitase isozymes in Triticeae species. MSc Thesis, Texas A&M University, College Station (abstr)

  • Chojecki AJS, Gale MD (1983) Genetic control of glucose phosphate isomerase in wheat and related species. Heredity 49:337–347

    Google Scholar 

  • Dennis ES, Gerlach WL, Peacock WJ (1980) Identical polypryrimidine-polypurine satellite DNAs in wheat and barley. Heredity 44:349–366

    Google Scholar 

  • De Vries JN, Sybenga J (1984) Chromosomal location of 17 monogenetically inherited morphological markers in rye (Secale cereale L) using the translocation tester set. Z Pflanzenzücht 92:117–139

    Google Scholar 

  • Driscoll CJ, Jensen NF (1963) A genetic method for detecting induced intergeneric translocation. Genetics 48:459–468

    Google Scholar 

  • Evans LE, Scoles DJ (1980) Cytogenetics, plant breeding and agronomy. In: Roz proisvodstvo chimia i technologia. Moskva, pp 16–36

  • Figueiras AM, Gonzalez-Jean M, Salinas J, Benito C (1985) Association of isozymic alleles with a reciprocal translocation in cultivated by (Secale cereale L.). Genetics 109:177–193

    Google Scholar 

  • Flavell RB (1982) Sequence amplification, deletion and rearrangements: major source of variation during species divergence. In: Dover GA, Flavell RB (eds) Genome evolution. Academic Press, London, pp 301–323

    Google Scholar 

  • Fra-Mon P, Salcedo G, Aragoncillo C, Garcia-Olmedo G (1984) Chromosome assignment of genes controlling saltsoluble proteins (albumins and globulines) in wheat and related species. Theor Appl Genet 69:167–173

    Google Scholar 

  • Gerlach WC, Peacock WJ (1980) Chromosomal location of highly repeated DNA sequences in wheat. Heredity 44:269–276

    Google Scholar 

  • Graham RD (1978) Tolerance of triticale, wheat and rye to copper deficiency. Nature 271:542–543

    Google Scholar 

  • Graham RD, Pearce DT (1979) The sensitivity of hexaploid and octoploid triticale and their parent species to copper deficiency. Aust J Agric Res 30:791–799

    Google Scholar 

  • Gustafson JP, Bennett MD (1976) Preferential selection for wheat-rye substitutions in 42-chromosome triticale. Crop Sci 16:688–693

    Google Scholar 

  • Hart GE (1978) Chromosomal arm locations of Adh-R2 and an acid phosphatase structural gene in Imperial rye. Cereal Res Commun 6:123–135

    Google Scholar 

  • Hart GE, Tuleen NA (1983) Introduction and characterization of alien genetic material. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding. Elsevier Publications, Amsterdam, pp 103–120

    Google Scholar 

  • Heneen WK (1962) Chromosome morphology in inbred rye. Hereditas 48:182–200

    Google Scholar 

  • Hejgaard J, Bjorn SE, Nielson G (1984) Rye chromosome carrying structural genes for the major grain protease inhibitors. Hereditas 101:257–259

    Google Scholar 

  • Hermsen JG (1970) Basic information for the use of primary trisomics in genetic and breeding research. Euphytica 19:125–140

    Google Scholar 

  • Höhler B, Schlegel R, Blüthner WD (1979) Das Muster von Peroxidase-Isoenzymen in 1R (1B) Weizen-Roggen-Substitutionsbzw. Translokationslinien. Biochem Physiol Pflanz 174:838–843

    Google Scholar 

  • Hossain MA, Driscoll CJ (1983) Fertility compensation of Cornerstone male sterility of wheat by rye. Genetics 104:181–187

    Google Scholar 

  • Hsam SLK, Zeller FJ, Huber W (1982) Genetic control of 6-phospho-gluconate dehydrogenase (6-PGD) isozymes in cultivated wheat and rye. Theor Appl Genet 62:317–321

    Google Scholar 

  • Hutchinson J, Chapman V, Miller TE (1980) Chromosome pairing at meiosis in hybrids between Aegilops and Secale species; a study by in situ hybridization using cloned DNA. Heredity 45:245–254

    Google Scholar 

  • Irani BN, Bhatia CR (1972) Chromosome location of alcohol dehydrogenase gene(s) in rye using wheat-rye addition lines. Genetica 43:195–220

    Google Scholar 

  • Jaaska V (1982) Isoenzymes of Superoxide dismutase in wheats and their relatives: alloenzyme variation. Biochem Physiol Pflanz 177:747–755

    Google Scholar 

  • Jain SK (1960) Cytogenetics of rye (Secale ssp). Bibliogr Genet 19:1–86

    Google Scholar 

  • Jones JDG, Flavell RB (1982) The structure, amount and chromosomal localization of defined repeated DNA sequences in species of the genus Secale. Chromosoma 86:613–641

    Google Scholar 

  • Kamanoi M, Jenkins BC (1962) Trisomies in common rye, S. cereale. Seiken Ziho 13:145–152

    Google Scholar 

  • Kobyljanski VD (1972) On the genetics of the dominant factor of short-strawed rye (russ). Genetika 8:12–17

    Google Scholar 

  • Koebner RMD, Shephard KW (1982) Shikimate dehydrogenase — a biochemical marker for group 5 chromosomes in the Triticinae. Genet Res 41:209–213

    Google Scholar 

  • Koller OL, Zeller FJ (1976) The homoeologous relationships of rye chromosome 4R and 7R with wheat chromosomes. Genet Res 28:177–188

    Google Scholar 

  • Laube W, Quadt F (1959) Roggen (Secale cereale). In: Handbuch der Pflanzenzüchtung, Bd 3, 2 Aufl. Parey, Berlin Hamburg, pp 5–25

    Google Scholar 

  • Lima-de-Faria A (1952) Chromomere analysis of the chromosome complement of rye. Chromosoma 5:1–68

    Google Scholar 

  • Lind V (1982) Analysis of the resistance of wheat-rye addition lines to powdery mildew of wheat (Erysiphe graminis F sp tritici). Tagungsber Akad Landwirtschaftswiss DDR 198:509–520

    Google Scholar 

  • Lindner A, Melz G, Mueller HW, Buschbeck R (1984) Genetic analysis of rye (Secale cereale L) 2. Leaf Peroxidase isoenzymes in trisomic and telotrisomics of chromosome 1R. Genet. Pol 25:345–348

    Google Scholar 

  • Luid NH, Watson IA (1976) Strains of Puccinia graminis virulent on wheat plants carrying gene Sr27 derived from ‘Imperial’ rye. Phytopathology 66:664–666

    Google Scholar 

  • Martin TJ, Harvey TL, Livers RW (1976) Resistance to wheat streak mosaic virus and its vectors, Aceria tulipae. Phytopathology 66:346–349

    Google Scholar 

  • May CE, Appels R (1978) Chromosome 2R substitution and translocation lines in hexaploid wheat. Cereal Res Commun 6:231–234

    Google Scholar 

  • May CE, Vickery SS, Driscoll CJ (1973) Gene control in hexaploid wheat. Sears ER, Sears LMS (eds) Proc 4th Int Wheat Genet Symp. University of Missouri, Columbia, pp 843–849

    Google Scholar 

  • Melz G, Schlegel R (1985) Identification of seven telotrisomics of rye (Secale cereale L). Euphytica 35:361–366

    Google Scholar 

  • Melz G, Neumann H, Müller H, Sturm W (1984) Genetical analysis of rye (Secale cereale L). 1. Results of gene localization on rye chromosomes using primarty trisomics. Genet Pol 25:111–115

    Google Scholar 

  • Miller TE (1984) The homoeologous relationships between the chromosomes of rye and wheat. Current status. Can J Genet Cytol 26:578–589

    Google Scholar 

  • Nalepa S (1983) A genetical investigation of hexaploid triticale III. The inheritance of some characters in hexaploid triticale and linkage between them. Hodowla Rosl Aklim Nasienn 27:39–50

    Google Scholar 

  • Owen MRL, Larter EN (1983) The effect of telomeric heterochromatin on prolamin (secalin) synthesis in inbred Secale cereale L. Agron Abstr: 74–75

  • Paneva TI, Konarev VG (1978) The control of gliadins in rye cultivars (russ). Dokl Vses Akad Skh Nauk 4:12–14

    Google Scholar 

  • Pieto ME, Hart GE (1985) The genetic control of triosephosphatase isomerase of hexaploid wheat and other Triticeae species. Genet Res 45:127–142

    Google Scholar 

  • Pilch J (1978) Cytological and morphological characteristics of primary trisomics in rye. Genet Pol 19:137–152

    Google Scholar 

  • Ranjekar PK, Lafontaine JG, Pallotta D (1974) Characterization of repetitive DNA in rye (Secale cereale). Chromosoma 48:427–440

    Google Scholar 

  • Rao IN, Rao PVM (1980) Evidence for duplicate genes coding for 6-phosphogluconate dehydrogenase in rye. Genet Res 35:309–312

    Google Scholar 

  • Riley R, Macer RFC (1966) The chromosomal distribution of the genetic resistance of rye to wheat pathogens. Can J Genet Cytol 8:640–653

    Google Scholar 

  • Riley R, Chapman V, Miller TE (1973) The determination of meiotic chromosome pairing. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Genet Symp. University of Missouri, Columbia; pp 731–738

    Google Scholar 

  • Rimpau J, Smith DB, Flavell RB (1978) Sequence organization analysis of the wheat and rye genomes by interspecies DNA/DNA hybridization. J Mol Biol 123:327–359

    Google Scholar 

  • Roemer R (1939) Roggen (Secale cereale). In: Handbuch der Pflanzenzüchtung, Bd 2, 1 Aufl. Parey, Berlin, pp 1–23

    Google Scholar 

  • Romanova NP (1982) Ispolsovanie medoda opredelenija zeplenija faktorov samonesovmestimosti morfologitscheskimi markerami u rzi (russ). Sesd Vsesoj Obsch Genetikov i Selek, Kishinev 4:142

    Google Scholar 

  • Rowley JD (1974) Identification of human chromosomes. In: Yunis JJ (ed) Human Chromosome Methodology. Acad Press, New York, pp 17–46

    Google Scholar 

  • Ruebenbauer T, Kubara-Szpunar L, Pajak K (1983) An interesting mutation of pleiotropic character induced by fast neutrons in rye (Secale cereale L). Genet Pol 24:319–325

    Google Scholar 

  • Salinas J, Benito C (1983) Chromosomal location of genes controlling 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase and glutamate dehydrogenase isozymes in cultivated rye. Euphytica 32:783–790

    Google Scholar 

  • Salinas J, Benito C (1984a) Phosphate isozymes in rye. Characterization, genetic control and chromosomal location. Z Pflanzenzücht 93:115–137

    Google Scholar 

  • Salinas J, Benito C (1984 b Chromosomal location of peroxidase structural genes in rye (Secale cereale L). Z Pflanzenzücht 93:291–309

    Google Scholar 

  • Salinas J, Benito C (1985) Chromosomal location of malate dehydrogenase structural genes in rye (Secale cereale L). Z Pflanzenzücht 94:208–217

    Google Scholar 

  • Salinas J, Figueiras MT, Gonzalez-Jean MT, Benito C (1985) Chromosomal location of isozyme markers in wheat-barley addition lines. Theor Appl Genet 70:192–198

    Google Scholar 

  • Sanchez-Monge R, Delibes A, Hernandez-Lucas C, Carbonero P, Garcia-Olmedo F (1979) Homoeologous chromosomal location of genes encoding thionins in wheat and rye. Theor Appl Genet 54:61–63

    Google Scholar 

  • Sarma NP, Natarajan AT (1973) Identification of heterochromatic regions in the chromosomes of rye. Hereditas 74:233–238

    Google Scholar 

  • Schilko TS, Kedrov-Zichman OO (1982) The linkage group of the pseudonormal trisomic of winter rye (russ). Sesd Vsesoj Obsch Genetikov i Selek, Kishinev 4:267

    Google Scholar 

  • Schlegel R, Gill BS (1984) N-banding analysis of rye chromosomes and the relationship between N-banded and C-banded heterochromatin. Can J Genet Cytol 26:765–769

    Google Scholar 

  • Schlegel R, Mettin D (1982) The present status of chromosome recognition and gene localization in rye, Secale cereale L. Proc Eucarpia Meeting in Rye Breeding and Research. Tagungsber Akad Landwirtschaftswiss DDR 198:131–152

    Google Scholar 

  • Schlegel R, Sturm W (1982) Das meiotische Paarungsverhalten der primären Trisome des Roggens (Secale cereale L). Proc Eucarpia Meeting in Rye Breeding and Research. Tagungsber Akad Landwirtschaftswiss DDR 198:225–247

    Google Scholar 

  • Schmidt JC, Seliger P, Schlegel R (1984) Isoenzyme als biochemische Markerfaktoren für Roggenchromosomen. Biochem Physiol Pflanz 179:197–210

    Google Scholar 

  • Schweizer D (1979) Fluorescent chromosome banding in plants: mechanisms, and implications for chromosome structure. In: Proc 4th John Innes Symp, pp 61–72

  • Shewry PR, Bradberry D, Franklin J, White RP (1985) The chromosomal locations and linkage relationships of structural genes for the prolamine storage proteins (selacins) of rye. Theor Appl Genet 69:63–71

    Google Scholar 

  • Shepherd KW, Jennings AG (1971) Genetic control of rye endosperm protein. Experientia 27:88–98

    Google Scholar 

  • Singh NK, Shepherd KW (1984) Mapping of the genes controlling high-molecular-weight glutelin subunits of rye on the long arm of chromosome 1R. Genet Res 44:117–123

    Google Scholar 

  • Smirnov WG, Sosnichina SP (1984) Genetika rzi. Leningrad, pp 1–156

  • Smith DB, Flavell RB (1977) Nucleotide sequence organization in the rye genome. Biochim Biophys Acta 474:82–97

    Google Scholar 

  • Stewart DM, Gillmare EC, Ausemus ER (1968) Resistance to Puccinia graminis derived from Secale cereale incorporated into Triticum aestivum. Phytopathology 58:508–511

    Google Scholar 

  • Sturm W (1978) Identifizierung von Trisomen der Sorte ‘Esto’ und Trisomen-Analyse des Gens Hl für Kurzstrohigkeit bei Secale cereale L. PhD Thesis Akademie der Landwirtschaftswissenschaften der DDR, pp 1–180

  • Sturm W, Engel KH (1980) Trisomenanalyse des Allels HL für Kurzstrohigkeit bei Secale cereale L. Arch Züchtungsforsch 10:31–35

    Google Scholar 

  • Sturm W, Müller H (1982) Localization of the recessive gene of the Moscow dwarf mutant short straw character in Secale cereale L (russ). Citol i Genet, Kiev 16:13–17

    Google Scholar 

  • Sturm W, Neumann H, Melz G (1981) Trisomenanalyse für das Merkmal Anthocyanfärbung bei Secale cereale L. Arch Züchtungsforsch 11:49–53

    Google Scholar 

  • Surikov IM (1971) Inheritance of two chlorophyll aberrations in rye (russ). Tr Prikl Bot Genet Sel 46:122–130

    Google Scholar 

  • Surikov IM, Romanova NP (1978) A contribution to factoral genetics of rye, Secale cereale L. 1. Inheritance of differences in such characters as pubescence of leaf sheath and winter or spring habit of growth (russ). Genetika 14:396–405

    Google Scholar 

  • Sybenga J (1983) Rye chromosome nomenclature and homoeology relationships. Workshop Report. Z Pflanzenzücht 90:297–304

    Google Scholar 

  • Sybenga J, Mastenbroek I (1980) Combined genetic and cytological analysis of positive and negative interference in an interchange heterozygote of rye (Secale cereale L). Heredity 44:83–92

    Google Scholar 

  • Sybenga J, van Eden J, van der Meijs QG, Roeterding BW (1985) Identification of the chromosomes of the rye translocation tester set. Theor Appl Genet 69:313–316

    Google Scholar 

  • Tang KS, Hart GE (1975) Use of isoenzymes as chromosome markers in wheat-rye addition lines and in triticales. Genet Res 26:187–201

    Google Scholar 

  • Tanner DG, Reinbergs E (1982) Genetic analysis of the trypsin inhibitor activity of triticale and rye. Z Pflanzenzucht 88:177–185

    Google Scholar 

  • Viinikka Y (1985) Identification of the chromosomes showing neocentric activity in rye. Theor Appl Genet 70:66–77

    Google Scholar 

  • Wehling P, Schmidt-Stohn G, Wricke G (1985) Chromosomal location of esterase, peroxidase, and phosphoglucomutase isozyme structural genes in cultivated rye. Theor Appl Genet 70:377–382

    Google Scholar 

  • Zeller FJ (1972) Cytogenetics of some rust resistant wheat cultivars. In: Prtoc Europ Mediterr Cereal Rusts Conf. Praha, pp 297–301

  • Zeller FJ, Koller CL (1981) Identification of a 4A/7R and a 7B/4R wheat-rye chromosome translocation. Theor Appl Genet 59:33–37

    Google Scholar 

  • Zeller FJ, Kimber G, Gill BS (1977) The identification of rye trisomics by translocations and Giemsa staining. Chromosoma 62:279–289

    Google Scholar 

  • Zeven AC (1972) Identification of chromosome carrying a locus for a gene conditioning the production of tyrosinase. Wheat Inf Serv 35:3–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. L. Pfahler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlegel, R., Melz, G. & Mettin, D. Rye cytology, cytogenetics and genetics — current status. Theoret. Appl. Genetics 72, 721–734 (1986). https://doi.org/10.1007/BF00266535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00266535

Key words

Navigation