Skip to main content
Log in

Benefits of various dextrans after delayed therapy in necrotizing pancreatitis of the rat

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Ultrahigh-molecular dextran (500 000 DA) has been shown to prevent pancreatic necrosis when given 30 min after induction of pancreatitis. This study should clarify the following: (a) are dextrans still effective after prolongation of the therapy-free interval? (b) what is the impact of the molecular weight of the dextrans? and (c) is their effect influenced by the dextran concentration or by the addition of hypertonic saline?

Animals and interventions

Acute pancreatitis was induced in 70 male dextran-tolerant Wistar rats using intraductal bile-salt infusion and intravenous hyperstimulation. After 3 h, animals were assigned to one of seven groups (n=10 per group) receiving either Ringer solution or different dextrans (10%) including 70 000 Da (DEX-70), 160 000 Da (DEX-160), 300 000 Da (DEX-300) or 500 000 Da (DEX-500). Additional groups included DEX-70 (6%) and DEX-70 (10%) in combination with hypertonic NaCl (7.5%) (HHS-70). Ringer solution was given at 24 ml/kg and all dextrans at 8 ml/kg.

Measurements and results

Trypsinogen activation peptides (TAP) were quantified in ascites and acinar necrosis after death or sacrifice at 9 h. As an index of less pathological trypsinogen activation, the mean TAP levels in ascites were significatly lower in DEX-70 and DEX-160 compared to Ringer controls (p<0.05,t-test). Furthermore, the amount of acinar necrosis was significantly lower in all dextran groups except the HHS-70 in comparison with Ringer controls (p<0.01,t-test). Finally, mortality was significantly reduced from 60% in Ringer controls to 10 and 0%, respectively, in the groups treated with DEX-70 and DEX-160 (p<0.03, Fisher's Exact test). There was a similar trend in all other groups except the HHS-70.

Conclusions

Despite a therapy-free interval of 3 h, dextrans reduce trypsinogen activation, prevent acinar necrosis, and improve survival in necrotizing rodent pancreatitis. The molecular weight and concentration of dextran are of secondary importance for these beneficial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niederau C, Crass RA, Silver G, Ferrell Grendell JH (19887 Therapeutic regimens in acute experimental hemorrhagic pancreatitis: effects of hydration, oxygenation, peritoneal lavage, and a potent protease inhibitor. Gastroenterology 95:1648–1657

  2. Lankisch PG, Koop H, Winckler K, Schmidt H (1979) Continuous peritoneal dialysis as treatment of acute experimental pancreatitis in the rat. I. Effect on length and rate of survival. Dig Dis Sci 24:111–116

    Google Scholar 

  3. Imrie CW, Benjamin IS, Ferguson JC, McKay AJ, Mackenzie I, O'Neill J, Blumgart LH (1978) A single-centre double-blind trial of trasylol therapy in primary acute pancreatitis. Br J Surg 65:337–341

    Google Scholar 

  4. Kimura T, Zuidema GD, Cameron JL (1980) Acute pancreatitis: experimental evaluation of steroid, albumin and trasylol therapy. Am J Surg 140: 403–408

    Google Scholar 

  5. Aho HJ, Nevalainen TJ, Aho AJ (1983) Experimental pancreatitis in the rat. Development of pancreatic necrosis, ischemia and edema after intraductal sodium taurocholate injection. Eur Surg Res 15:28–36

    Google Scholar 

  6. Foulis AK (1980) Histological evidence of initiating factors in acute necrotising pancreatitis in man. J Clin Pathol 32: 1125–1131

    Google Scholar 

  7. Spormann H, Sokolowski A, Birkigt HG, Letko G (1986) Contribution of pancreatic edema and short-term ischemia to experimental acute pancreatitis in the rat. I. Procedure and pathomorphological investigations. Z Exp Chir Transpl Künstl Organe 19:323–330

    Google Scholar 

  8. Nuutinen P, Kivisaari L, Standertskjoeld-Nordenstam CG, Lempinen M, Schroeder T (1986) Microangiography of the pancreas in experimental oedemic and haemorrhagic pancreatitis. Scand J Gastroenterol 21:12–17

    Google Scholar 

  9. Klar E, Messmer K, Herfarth C (1986) The effect of hemodilution on the impairment of pancreatic microcirculation in acute biliary pancreatitis. Langenbecks Arch Chir Suppl 299–302

  10. Klar E, Endrich B, Hammersen F, Messmer K, Herfarth C (1986) Therapeutic effect of isovolemic hemodilution with dextran 60 in the morphological integrity of the pancreas in acute biliary pancreatitis. Langenbecks Arch Chir Suppl 367-2-371

  11. Klar E, Herfarth C, Messmer K (1990) Therapeutic effect of isovolemic hemodilution with dextran 60 on the impairment of pancreatic microcirculation in acute biliary pancreatitis. Ann Surg 211:346–353

    Google Scholar 

  12. Klar E, Messmer K, Warshaw AL, Herfarth C (1990) Pancreatic ischaemia in experimental acute pancreatitis: mechanism, significance and therapy. Br J Surg 77:1205–1210

    Google Scholar 

  13. Martin DT, Steinberg SM, Kopolovic R, Carey LC, Cloutier CT (1984) Crystalloid versus colloid resuscitation in experimental hemorrhagic pancreatitis. J Am Coll Surg 159:445–449

    Google Scholar 

  14. Schmidt J, Rattner DW, Lewandrowski K, Compton CC, Mandavilli U, Knoefe WT, Warshaw AL (1991) A better model of acute pancreatitis for evaluating therapy. Ann Surg 215:44–56

    Google Scholar 

  15. Fernandez-del Castillo C, Schmidt J, Rattner DW, Lewandrowski K, Compton CC, Jehanli A, Patel G, Hermon-Taylor J, Warshaw AL (1991) Generation and possible significance of trypsinogen activation peptides in experimental acute pancreatitis in the rat. Pancreas 7:263–270

    Google Scholar 

  16. Schmidt J, Fernandez-del Castillo C, Rattner DW, Lewandrowski K, Compton CC, Warshaw AL (1992) Trypsinogen activatin peptides in experimental rat pancreatitis: prognostic implications and histopathologic correlates. Gastroenterology 103: 1009–1016

    Google Scholar 

  17. Schmidt J, Lewandrowski K, Warshaw AL, Compton CC, Rattner DW (1992) Morphometric characteristics and homogeneity of a new model of acute pancreatitis in the rat. Int J Pancreatol 12:41–51

    Google Scholar 

  18. Schmidt J, Fernandez-del Catillo C, Rattner DW, Lewandrowski K, Messmer K, Warshaw AL (1993) Hyperoncotic ultrahigh molecular weight dextran solutions reduce trypsinogen activation, prevent acinar necrosis, and lower mortality in rodent pancreatitis. Am J Surg 165:40–45

    Google Scholar 

  19. Harris JM, West GB (1963) Rats resistant to the dextran anaphylactoid reaction. Br J Pharmacol 20:550–562

    Google Scholar 

  20. Ivarsson L, Appelgren L, Rudenstam CM (1975) Plasma volume after dextran infusion in rats sensitive and nonsensitive to dextran. Eur Surg Res 7:315–325

    Google Scholar 

  21. Mandavilli U, Schmidt J, Rattner DW, Watson WT, Warshaw AL (1991) Continuous complete collection of uncontaminated urine in the conscious rodent. Lab Anim Sci 41:258–261

    Google Scholar 

  22. Gudgeon AM, Heath DI, Hurley P, Jehanli A, Patel G, Wilson C, Shenkin A, Austen BM, Imrie CW, Hermon-Taylor J (1990) Trypsinogen activation peptides assay in the early prediction of severity of acute pancreatitis. Lancet 335:4–8

    Google Scholar 

  23. Hurley PR, Cook AJ, Austen BM, Hermon-Taylor J (1988) Antibodies to trypsinogen activation peptides recognize both Ca2+ dependent and Ca2+ independent epitopes. Biochem Soc Trans 16:337–338

    Google Scholar 

  24. Hurley PR, Cook A, Jehanli A, Austen BM, Hermon-Taylor J (1988) Development of radioimmunoassays for free tetra-l-aspartyl-l-lysine trypsinogen activation peptides (TAP). J Immunol Methods 111:195–203

    Google Scholar 

  25. Klar E, Endrich B, Messmer K (1990) Microcirculation of the pancreas. A quantitative study of physiology and changes in pancreatitis. Int J Microcirc Clin Exp 9:85–101

    Google Scholar 

  26. Schiller WR, Anderson MC (1974) Microcirculation of the normal and inflamed canine pancreas. Ann Surg 181: 466–470

    Google Scholar 

  27. Kühn R, Blöchle C, Knöfel WT, Kusterer K, Izbicki JR, Brölsch CE (1995) Aufrechterhaltung der Mikrozirkulation durch den Bradykinin Antagonisten Hoe 140 in der Na-Taurocholat-Pankreatitis der Ratte. Langenbecks Arch Chir Suppl 444–449

  28. Kusterer K, Poschmann T, Friedemann A, Enghofer M, Zendler S, Usadel KH (1993) Arterial constriction, ischemia reperfusion, and leukocyte adherence in acute pancreatitis. Am J Physiol 265: G165-G174

    Google Scholar 

  29. Popper HL, Necheles H, Russel K (1948) Transition of pancreatic edema into pancreatic necrosis. J Am Coll Surg 87:79–82

    Google Scholar 

  30. Anderson MC (1963) Venous stasis in the transition of edematous pancreatitis to necrosis. JAMA 183:534–537

    Google Scholar 

  31. Klar E, Rattner DW, Compton C, Stanford G, Chernow B, Warshaw AL (1991) Adverse effects of therapeutic vasoconstrictors in experimental acute pancreatitis. Ann Surg 214:168

    Google Scholar 

  32. Fernandez-del Castillo C, Harringer W, Warshaw AL, Vlahakes GJ, Koski G, Zaslavsky AM, Rattner DW (1991) Risk factors for pancreatic cellular injury after cardiopulmonary bypass. N Engl J Med 325:382–387

    Google Scholar 

  33. Harvey MH, Wedgwood KR, Reber HA (1987) Treatment of acute pancreatitis with β-adrenergic agonist drugs. Surgery 102:229–234

    Google Scholar 

  34. Mishler JM (1984) Synthetic plasma volume expanders — their pharmacology, safety and clinical efficacy. Clin Haematol 13:75–92

    Google Scholar 

  35. Horton JW, Dunn CW, Burnweit CA, Walker PB (1989) Hypertonic salinedextran resuscitation of acute canine bile-induced pancreatitis. Am J Surg 158:48–56

    Google Scholar 

  36. Klar E, Mall G, Messmer K, Herfarth C, Rattner DW, Warshaw AL (1993) Improvement of impaired pancreatic microcirculation by isovolemic hemodilution protects pancreatic morphology in acute biliary pancreatitis. J Am Coll Surg 176: 144–150

    Google Scholar 

  37. Messmer K, Kreimeier U, Hammersen F (1988) Microcirculation in circulatory disorders. In: Manabe H, Zweifach BW, Messmer K (eds) Multiple organ failure: clinical implications to macro- and microcirculation. Springer, Berlin Heidelberg New York, 147–157

    Google Scholar 

  38. Nolte D, Lehr HA, Messmer K (1991) Dextran and adenosine-coupled dextran reduce postischemic leukocyte adherence in postcapillary venules of the hamster. Prog Appl Microcirc 10: 103–111

    Google Scholar 

  39. Werner J, Schmidt J, Gebhard MM, Herfarth C, Klar E (1996) Inhibition of leucocyte-endothelium interaction in the treatment of experimental necrotizing pancreatitis (abstract). Gastroenterology 110 [Suppl]: A442

    Google Scholar 

  40. Schmidt J, Hotz HG, Langer C, Buhr HJ, Herfarth C, Klar E (1995) Dextran induziert eine spezifische Verbesserung der reduzierten Pankreasmikrozirkulation bei experimenteller nekrotisierender Pankreatitis. Langenbecks Arch Chir Suppl 427-432

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft no. Schm 781/2-1+2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotz, H.G., Buhr, H.J., Herfarth, C. et al. Benefits of various dextrans after delayed therapy in necrotizing pancreatitis of the rat. Intensive Care Med 22, 1207–1213 (1996). https://doi.org/10.1007/BF01709338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01709338

Key words

Navigation