Skip to main content
Log in

The role of endothelin-1 as a mediator of the pressure response after air embolism in blood perfused lungs

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective: It is well known that lung embolism is associated with an increase in pulmonary vascular resistance. Since the mechanisms of pulmonary vascular reactions during embolism are still unclear, the aim of this study was to investigate the potential involvement of endothelin-1 (ET-1) and thromboxane A2 (TXA2) as mediators of the pulmonary artery pressure (PAP) increase after embolism using the selective ETA receptor antagonist LU135252 [1], the ETB receptor antagonist BQ788 [2], and the cy-clooxygenase inhibitor diclofenac.

Design: Prospective experimental study in rabbits.

Setting: Experimental laboratory in a university teaching hospital.

Subjects: 36 adult rabbits of either sex.

Interventions: The experiments were performed in 36 isolated and ventilated rabbit lungs which were perfused with a buffer solution containing 10 % of autologous blood. Embolism was induced by the injection of 0.75 ml air into the pulmonary artery.

Measurements and results: PAP and lung weight, reflecting edema formation, were continuously recorded. Perfusate samples were drawn intermittently to determine TXA2 and ET-1 concentrations. Air injection resulted in an immediate increase in PAP up to 22.8 ± 1.4 mm Hg at 2.5 min (control, n=6), which was parallelled by an enhanced generation of TXA2. No relevant edema formation occurred during the observation period. Pretreatment with the ETA receptor antagonist LU135 252 significantly reduced the pressure reaction after air embolism (p<0.001) whereas the ETB receptor antagonist BQ788 (n=6) was without marked effects. The administration of diclofenac (n=6) did not alter the PAP increase 2.5 min after embolism, but significantly reduced the pressure reaction during the further observation period (p<0.001). The application of LU135 252 and diclofenac together (n=6) also significantly reduced the PAP increase from 2.5 min during the total observation period (p < 0.001).

Conclusions: The acute pressure reaction after air embolism is mainly mediated via ET-1 by an ETA receptor related mechanism. TXA2 seems to maintain this reaction for a longer time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Katsutoshi G, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415

    Article  PubMed  CAS  Google Scholar 

  2. Arai H, Hori S, Aramori H, Ohkubo H, Nakanishi S (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730–732

    Article  PubMed  CAS  Google Scholar 

  3. Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T (1990) Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348: 732–735

    Article  PubMed  CAS  Google Scholar 

  4. Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP, Path FRC, Stewart DJ (1993) Expression of endothelial in the lungs of patients with pulmonary hypertension. N Engl J Med 328:1732–1739

    Article  PubMed  CAS  Google Scholar 

  5. Chen WY, Yu J, Wang JY (1995) Decreased production of endothelin-1 in asthmatic children after immunotherapy. J Asthma 32:29–35

    Article  PubMed  CAS  Google Scholar 

  6. Vittori E, Marini M, Fasoli A, DeFranchis R, Mattoli S (1992) Increased expression of endothelin in bronchial epithelial cells of asthmatic patients and effects of corticosteroids. Am Rev Respir Dis 146:1320–1325

    PubMed  CAS  Google Scholar 

  7. Mitaka C, Hirata Y, Makita K, Nagura T, Tsunoda Y, Amaha K (1993) Endothelin-1 and atrial natriuretic peptide in septic shock. Am Heart J 126: 466–468

    Article  PubMed  CAS  Google Scholar 

  8. Munter K, Hergenröder S, Unger L, Kirchengast M (1996) Oral treatment with an ETA-receptor antagonist inhibits neointima formation induced by endothelial injury. Pharm Pharmacol Lett 6: 90–92

    Google Scholar 

  9. Riechers H, Albrecht HP, Amberg W, Baumann E, Bernard H, Böhm HJ, Klinge D, Kling A, Müller S, Raschack M, Unger L, Walker N, Wernet W (1996) Discovery and optimization of a novel class of orally active nonpeptidic endothelin-A receptor antagonists. J Med Chem 39: 2123–2128

    Article  PubMed  CAS  Google Scholar 

  10. Ishikawa K, Ihara M, Noguchi K, Toshikai M, Mino N, Saeki T, Fukuroda T, Fukami T, Ozaki S, Nagase T, Nishikibe M, Yano M (1994) Biochemical and pharmacological profile of a potent and selective endothelin B-receptor antagonist, BQ788. Proc Natl Acad Sci USA 91:4892–4896

    Article  PubMed  CAS  Google Scholar 

  11. Thiemermann C, Lidbursy PS, Thomas GR, Vane JR (1989) Endothelin-1 releases prostacyclin and inhibits ex vivo platelet aggregation in the anesthetized rabbit. J Cardiovasc Pharmacol 13 (Suppl 5):S138-S141

    PubMed  CAS  Google Scholar 

  12. Macquin-Mavier I, Levame M, Istin N, Harf A (1989) Mechanisms of endothelin mediated bronchoconstriction in the guinea pig. J Pharmacol Exp Ther 250: 740–745

    PubMed  CAS  Google Scholar 

  13. Del Basso P, Argiolas L (1995) Cardiopulmonary effects of endothelin-1 in the guinea pig: role of thromboxane A2. J Cardiovasc Pharmacol 26 (Suppl 3):S120-S122

    PubMed  Google Scholar 

  14. Koch T, Duncker HP, Rosenkranz S, Van Ackern K, Neuhof H (1992) Alterations of filtration coefficients in pulmonary edema of different pathogenesis. J Appl Physiol 73 (6):2396–2402

    PubMed  CAS  Google Scholar 

  15. Seeger W, Walmrath D, Menger M, Neuhof H (1986) Increased lung vascular permeability after arachidonic acid and hydrostatic challenge. J Appl Physiol 61:1781–1789

    PubMed  CAS  Google Scholar 

  16. Peskar BA, Steffens CH, Peskar BM (1979) Radioimmunoassay of 6-keto-prostaglandin F1-alpha in biological material. In: DaPrada M, Peskar BA (eds) Radioimmunoassay of Drugs and Hormones in Cardiovascular Medicine. Elsevier/North-Holland, Amsterdam, p 239

    Google Scholar 

  17. Fukuroda T, Ozaki S, Ihara M, Ishikawa K, Yano M, Nishikibe M (1994) Synergistic inhibition by BQ-123 and BQ-788 of endothelin-1-induced concentrations of the rabbit pulmonary artery. Br J Pharmacol 113: 336–338

    PubMed  CAS  Google Scholar 

  18. Helmsworth JA, Gall EA, Perrin EV, Braley SA, Flege JB, Kaplan S, Keirle AM (1963) Occurrence of emboli during perfusion with an oxygenator pump. Surgery 53:177–185

    PubMed  CAS  Google Scholar 

  19. Spencer MP (1976) Decompression limits for compressed air determined by ultrasonically detected blood bubbles. J Appl Physiol 40: 229–235

    PubMed  CAS  Google Scholar 

  20. Iwao Y, Masuda J, Ochiai R, Higa S, Takeda J, Sekiguchi H, Nagano M (1995) Does pulmonary air embolism affect the pulsatility of pulmonary capillary blood flow in dogs? (Abstract) Nippon Kyobu Shikkan Gakkai Zasshi 29 (3):338–344

    Google Scholar 

  21. Josephson S (1970) Pulmonary hemodynamics during experimental air embolism. Scand J Clin Lab Invest 115 (Suppl):S9-S30

    Google Scholar 

  22. Perkett EA, Brigham KL, Meyrick B (1988) Continuous air embolization into sheep causes sustained pulmonary hypertension and increased pulmonary vasoreactivity. Am J Pathol 132: 444–454

    PubMed  CAS  Google Scholar 

  23. Wang D, Li MH, Hsu K, Shen CY, Chen HI, Lin YC (1992) Air embolism-induced lung injury in isolated rat lungs. J Appl Physiol 72 (4):1235–1242

    PubMed  CAS  Google Scholar 

  24. Schmeck J, Koch T, Neuhof H, Van Ackern K (1998) Endothelin-1 is not involved in pulmonary hypertension after lung embolism in isolated perfused rabbit lungs. Appl Cardiopulm Pathophysiol 6: 241–246

    Google Scholar 

  25. Wagner OF, Vierhapper H, Gasic S, Nowotny P, Waldhäusl W (1992) Regional effects and clearance of endothelin-1 across pulmonary and splanchnic circulation. Eur J Clin Invest 22: 277–282

    Article  PubMed  CAS  Google Scholar 

  26. Patrignani P, Del-Maschio A, Bazzoni G, Daffonchio L, Hernandez A, Modica R, Montesanti L, Volpi D, Patrono C, Dejana E (1991) Inactivation of endothelin by polymorphonuclear leukocyte-derived lytic enzymes. Blood 78(10):2715–2720

    PubMed  CAS  Google Scholar 

  27. Nakamura S, Naruse M, Naruse K, Demura H, Uemura H (1990) Immuno-cytochemical localization of endothelin in cultured bovine endothelial cells. Histochemistry 94: 475–477

    Article  PubMed  CAS  Google Scholar 

  28. Marita T, Kurihara H, Yoshizumi M, Maemura K, Sugiyama T, Nagai R, Yazaki Y (1993) Human polymorphonu-clear leukocytes have dual effects on endothelin-1: the induction of endothelin-1 mRNA expression in vascular endothelial cells and modification of the endothelin-1 molecule. Heart Vessels 8(l):l-6

    Google Scholar 

  29. Kaw S, Hecker M, Southan GJ, Warner TD, Vane JR (1992) Characterization of serine protease-derived metabolites of big endothelin in the cytosolic fraction from human polymorphonuclear leukocytes. J Cardiovasc Res 20 (Suppl 12):S22-S24

    CAS  Google Scholar 

  30. Kaw S, Hecker M, Vane JR (1992) The two-step conversion of big endothelin-1 to endothelin 1 and degradation of endothelin-1 by subcellular fractions from human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 89(15):6886–6890

    Article  PubMed  CAS  Google Scholar 

  31. Sessa WC, Kaw S, Zembowicz A, Anggard E, Hecker M, Vane JR (1991) Human polymorphonuclear leukocytes generate and degradate endothelin-1 by two distinct neutral proteases. J Cardiovasc Pharmacol 17(Suppl 7):S34-S38

    Article  PubMed  CAS  Google Scholar 

  32. DiCarlos VS, Chen SJ, Meng QC, Durand J, Yano M, Chen YF, Oparil S (1995) ETA-receptor antagonist prevents and reverses chronic hypoxia-induced pulmonary hypertension in rat. Am J Physiol 269:L690-L697

    Google Scholar 

  33. Hay DWP, Hubbard WC, Undem BJ (1993) Endothelin receptor subtypes in human and guinea-pig pulmonary tissues. Br J Pharmacol 110:1175–1183

    PubMed  CAS  Google Scholar 

  34. Fukuroda T, Kobayashi M, Ozaki S, Yano M, Miyauchi T, Onizuka M, Sugishita Y, Goto K, Nishikibe M (1994) Endothelin receptor subtypes in human versus rabbit pulmonary arteries. J Appl Physiol 76 (5):1976–1982

    PubMed  CAS  Google Scholar 

  35. LaDouceur DM, Flynn MA, Keiser JA, Reynolds E, Haleen S (1993) ETA and ETB receptors coexist on rabbit pulmonary artery vascular smooth muscle mediating contraction. Biochem Biophys Res Commun 196: 209–215

    Article  PubMed  CAS  Google Scholar 

  36. Buchan KW, Magnusson H, Rabe KF, Sumner MJ, Watts IS (1994) Characterisation of the endothelin receptor mediating contraction of human pulmonary artery using BQ123 and Ro 46-2005. Eur J Pharmacol 260: 221–225

    Article  PubMed  CAS  Google Scholar 

  37. Hay DWP, Luttmann MA, Hubbard WC, Undem BJ (1993) Endothelin receptor subtypes in human and guinea-pig pulmonary tissues. Br J Pharmacol 110:1175–1183

    PubMed  CAS  Google Scholar 

  38. Okada M, Yamashita C, Okada M, Okada K (1995) Contribution of endothelin-1 to warm ischemia/reperfusion injury of the rat lung. Am J Respir Crit Care Med 152: 2105–2110

    PubMed  CAS  Google Scholar 

  39. Ishizaki T, Shigemori K, Nakai T, Miyabo S, Hayakawa M, Ozawa T, Voelkel NF, Chang SW (1995) Endothelin-1 potentiates leukotoxin-induced edematous lung injury. J Appl Physiol 79 (4):1106–1111

    PubMed  CAS  Google Scholar 

  40. Del Basso P, Argiolas L (1995) Cardiopulmonary effects of endothelin-1 in the guinea pig: role of thromboxane A2. J Cardiovasc Pharmacol 26 (Suppl 3):S120-S122

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmeck, J., Koch, T., Heller, A. et al. The role of endothelin-1 as a mediator of the pressure response after air embolism in blood perfused lungs. Intensive Care Med 24, 605–611 (1998). https://doi.org/10.1007/s001340050622

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001340050622

Key words

Navigation