Skip to main content
Log in

On flows of granular materials

  • Review Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This article reviews the behavior of materials made up of a large assemblage of solid particles under rapid and quasi static deformations. The focus is on flows at relatively high concentrations and for conditions when the interstitial fluid plays an insignificant role. The momentum and energy exchange processes are then primarily governed by interparticle collisions and Coulomb-type frictional contact. We first discuss some physical behavior —dilatancy, internal friction, fluidization and particle segregation — that are typical to the understanding of granular flows. Bagnold's seminal Couette flow experiments and his simple stress analysis are then used to motivate the first constitutive theories that use a microstructural variable — the fluctuation energy or granular temperature — governing the subscale fluctuating motion. The kinetic theories formalize the derivation of the field equations of bulk mass, momentum and energy, and permit derivation of constitutive relations for stress, flux of fluctuation energy and its dissipation rate for simple particle assemblages and when frictional rubbing contact can be ignored. These statistical considerations also show that formulation of boundary conditions needs special attention. The frictional-collisional constitutive behavior in which both Coulomb-type rubbing contact and collisional encounters are significant are discussed. There is as yet no rigorous formulation. We finally present a phenomenological approach that describes rapid flows of granular materials under simultaneous transport of heat and close with a summary of stability analyses of the basic flow down an inclined plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi, G., 1982: A continuum theory of smectic a liquid crystals.J. Rheology,26, 535–566

    Google Scholar 

  2. Ahmadi, G., 1983: A generalized continuum theory for flow of granular materials. InAdvances in the mechanics and the flow of granular materials,2. (ed. M. Shahinpoor). II Gulf Publishing Co., 497–527

  3. Ahmadi, G.; Ma, D. N., 1986.Int. J. Bulk Solid Storage in Silos, 2, p. 8

    Google Scholar 

  4. Ahmadi, G.; Shahinpoor, M., 1983: Towards a turbulent modeling of rapid flow of granular materials.Powder Tech., 35, 241–248

    Google Scholar 

  5. Ahn, H., 1989: Experimental and analytical investigation of granular materials.Ph. D. Thesis. Caltech

  6. Ahn, H.; Brennen, C. E.; Sabersky, R. H., 1992: Analysis of the fully developed chute flow of granular materials.J. App. Mech. 59, 109–119

    Google Scholar 

  7. Augenstein, D. A.; Hogg R., 1978: An experimental study of the flow of dry powders over inclined surfaces.Powder Techn., 19, 205–15

    Google Scholar 

  8. Babic, M., 1993: On the stability of rapid granular flows.J. Fluid Mech., 254, 127–150

    Google Scholar 

  9. Bagnold, R. A., 1954: Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear.Proc. R. Soc. London, Ser. A 225, 49–63

    Google Scholar 

  10. Bagnold, R. A., 1966: The shearing and dilatation of dry sand and the singing mechanism.Proc. R. Soc. London, A 295, 219–232

    Google Scholar 

  11. Bailard, J., 1978: An experimental study of granular-fluid flow.Ph. D. Thesis, Univ. of Calif., San Diego, 172 pp

    Google Scholar 

  12. Bashir, Y. M.; Goddard, J. D., 1990: Experiments on the conductivity of suspensions of ionically-conductive spheres.Ai. Ch. Engng. J., 36, 387–396

    Google Scholar 

  13. Batchelor, G. K.; O'Brien, R. W., 1977: Thermal or electrical conduction through a granular material.Proc. R. Soc., London., A 355, 313–333

    Google Scholar 

  14. Bhatnagar, P. L.; Gross, P.; Krook, M., 1954: A model for collision processes in gases I: small amplitude processes in charged and in neutral one component systems.Physical Reviews, 94, 5511–5536

    Google Scholar 

  15. Blinowski, A., 1978: On the dynamic flow of granular media.Arch. of Mech., Arch. Mech. Stoso., 30, Nr. 1, pp. 27–34

    Google Scholar 

  16. Boyle, E. J.; Massoudi, M., 1989: Kinetic theories of granular materials with applications to fluidized beds.U. S. Department of Energy, Technical Note, DOE/METC-89-4088.

  17. Boyle, E. J.; Massoudi, M., 1990: A theory for granular materials exhibiting normal stress effects based on Enskog's dense gas theory.Int. J. Engng. Sci. 28, 1261–1275

    Google Scholar 

  18. Bridgewater, J., 1972: Stress-velocity relationships for particulate solids.ASME paper 72-MH-21, 7 pp

  19. Buggisch, H.; Stadtler, R., 1986: On the relation between shear rate and stresses in one-dimensional steady flow of moist bulk solids.Proc. World Congress Particle Technolgy, Part III, Mechanics of Pneumatic and Hydraulic Conveying and Mixing, Nürnberg, 16–18 April, 187–202

  20. Campbell, C. S., 1986: Computer simulation of rapid granular flows.Proc. 10th National Congr. on Appl. Mech. Austin, Texas, 327–338, New York, ASME

    Google Scholar 

  21. Campbell, C. S., 1990: Rapid granular flows.Ann. Rev. Fluid Mech. 22, 57–92

    Google Scholar 

  22. Carnahan, N. F.; Starling, K. E., 1969: Equations of state for non-attracting rigid spheres.J. Chem. Phys., 51, pp. 635–636

    Google Scholar 

  23. Criminale, W. O.; Jr., Ericksen, J. L.; Filbey, G. L., 1958: Steady shear flow of non-Newtonian Fluids.Arch. Rational Mech. Anal., 1, 410–417

    Google Scholar 

  24. Davies, T. R. H., 1986: Large debris flows: A macro-viscous phenomenon.Acta Mechanica, 63, 161–178

    Google Scholar 

  25. Davies, T. R. H., 1988: Debris flow surges-A laboratory investigation.Mitteilung No. 96 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, 122 pp

  26. Eringen, A. C., 1969: Mechanics of micropolar continua.Contributions to Mechanics, (D. Abir, ed.) Pergamon Press, New York, 23–40

    Google Scholar 

  27. Faraday, M., 1831: On the peculiar class of accoustical figures assumed by groups of particles upon vibrating elastic surfaces.Phil. Trans, 299–340 (see alsoFaraday's Diary, 1 (T. Martin ed.), G. Bell and Sons Ltd., London, 324–359

    Google Scholar 

  28. Galdi, G.P.; Padula, M.; Rajagopal, K.R., 1991:Recent Advances in Mechanics of Structured Continua, AMD-117, ASME, New York

    Google Scholar 

  29. Goddard, J. D., 1986: Dissipative materials as constitutive models for granular media.Acta Mechanica, 63, 3–13

    Google Scholar 

  30. Goodman, M. A.; Cowin, S. C., 1971: Two problems in the gravity flow of granular materials.J. of Fluid Mechanics, 45, 321–339

    Google Scholar 

  31. Goodman, M. A.; Cowin, S. C., 1972: A continuum theory for granular materials,Arch. Rational Mech. Anal., 44, (4), 249–266

    Google Scholar 

  32. Grad, H., 1949: On the kinetic theory of rarified gases.Comm. Pure and Applied Math. 2, 331–407

    Google Scholar 

  33. Gudhe, R., 1993: A theoretical and numerical study of the flow of granular materials down an inclined plane.Ph. D. Thesis, University of Pittsburgh, Pittsburgh

    Google Scholar 

  34. Gudhe, R.; Rajagopal, K.R.; Massoudi, M., 1994: Fully developed flow of granular materials down an inclined plane.Acta Mechanica, 103, 63–78

    Google Scholar 

  35. Gudhe, R.; Yalamanchili, R. C.; Massoudi, M., 1993: The flow of granular materials in a pipe: numerical solutions.Rec. Adv. Mech. Strctd. Continua, AMD-160/MD-41, 41–53

    Google Scholar 

  36. Gupta, G., 1993: Flow of granular materials and non-newtonian fluids.Ph. D. Thesis, University of Pittsburgh, Pittsburgh

    Google Scholar 

  37. Haff, P. K., 1983: grain flow as a fluid-mechanical phenomenon.J. Fluid Mech., 134,401–430

    Google Scholar 

  38. Haff, P. K., 1986: A physical picture of kinetic granular flows.J. Rheology, 30.

  39. Hanes, D. M.; Inman, D. L., 1985: Observation of rapidly flowing granular-fluid mixtures.J. Fluid Mech., 150, 357–380

    Google Scholar 

  40. Heim, A., 1882: Der Bergsturz von Elm.Deutsch. Geol. Gesell. Zeitschrift, 34, 74–115

    Google Scholar 

  41. Heim, A., 1932: Bergsturz und Menschenleben, Beiblatt zur Vierteljahresschrift derNatf. Ges. Zürich, 20, 1–218

    Google Scholar 

  42. Heisenberg, W., 1948: Zur statistischen Theorie der Turbulenz.Z. für Physik, 124, 628–657

    Google Scholar 

  43. Huber, A., 1980: Schwallwellen in Seen als Folge von Felsstürzen.Mitteilung No. 47 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, 1–122

  44. Hui, K.; Haff, P. K.; Ungar, J. E.; Jackson, R., 1984, Boundary conditions for high-shear grain flows.J. Fluid Mech. 145, 223–233

    Google Scholar 

  45. Hungr, O.; Morgenstern, N. R. 1984: High velocity ring shear tests on sand.Gotechnique, 34, 415–421

    Google Scholar 

  46. Hutter, K., 1989: A continuum model for finite mass avalanches having shear-flow and plug-flow regime.Internal Report, Federal Institute of Snow and Avalanche Research, Weissfluhjoch, Ch-7620 Davos

  47. Hutter, K., 1994: Avalanche dynamics, a review. In:Hydrology of Disasters (V. P. Singh, ed.) Kluwer Academic Publishers, Amsterdam. (in press)

    Google Scholar 

  48. Hutter, K.; Szidarovskiy, F.; Yakowitz, S., 1986a: Plane steady shear flow of a cohesionless granular material down an inclined plane: A model for flow avalanches, Part I: Theory.Acta Mechanica, 63, 87–112

    Google Scholar 

  49. Hutter, K.; Szidarovskiy, F.; Yakowitz, S., 1986b: Plane steady shear flow of a cohesionless granular material down an inclined plane: A model for flow avalanches, Part II: Numerical results.Acta Mechanica, 65, 239–261

    Google Scholar 

  50. Ishida, M.; Shirai, T., 1979: Velocity, distributions in the flow of solid particles in an inclined open channel.J. Chem. Eng. of Japan, 12, 46–50

    Google Scholar 

  51. Ishida, M.; Hatano, H.; Shirai, T., 1980: The flow of solid particles in an aerated inclined channel.Powder Techn., 27, 7–12

    Google Scholar 

  52. Iverson, R. M.; Denlinger, R. P., 1987: The physics of debris flows-A conceptual assessment. In:Erosion and Sedimentation in the Pacific Rim (Proceedings of the Corvallis Symposium), IAHS Publ. No 165, 155–165

  53. Jenkins, J. T. 1975: Static equilibrium of granular materials.J. of Appl. Mech. 42, 603–606

    Google Scholar 

  54. Jenkins, J. T., 1987: Balance laws and constitutive relations for rapid flows of granular materials. In:Proc. Army Research Office Workshop on Constitutive Relations (Chandra, J. and Srivastava, R., eds.), Philadelphia

  55. Jenkins, J. T.; Cowin, S. C., 1979: Theories for flowing granular materials.The Joint ASME-CSME Appl. Mech. Fluid Engng. and Bioengng. Conf., AMD-Vol. 31, pp. 79–89

    Google Scholar 

  56. Jenkins, J.T.; Richman, M.W., 1985a: Grad's 13-moment system for a dense gas of inelastic spheres.Arch. Rat. Mech. and Anal., 87, 355–377

    Google Scholar 

  57. Jenkins, J.T.; Richman, M.W., 1985b: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks.Physics of Fluids, 28, 3485–3494

    Google Scholar 

  58. Jenkins, J.T.; Richman, M.W., 19886. Boundary conditions for plane flows of smooth, nearly elastic, circular disks.J. Fluid Mech. 171, 53–69

    Google Scholar 

  59. Jenkins, J. T.; Savage, S. B., 1981: The mean stress resulting from interparticle collisions in a rapid granular shear flow. In:Proceedings of the Fourth International Conference on Continuum Models of Discrete Systems (O. Bruhin and R. K. T. Hsien, eds.), North Holland

  60. Jenkins, J. T.; Savage, S. B., 1983: A theory for the rapid flow of identical, smooth, nearly elastic spherical particles.J. Fluid Mech., 130, 187–202

    Google Scholar 

  61. Johnson, G.; Massoudi, M.; Rajagopal, K. R., 1991a: Flow of a fluid-solid mixture between flat plates.Chem. Engng. Sci., 46, 1713–1723

    Google Scholar 

  62. Johnson, G.; Massoudi, M.; Rajagopal, K. R., 1991b: Flow of a fluid infused with solid particles through a pipe.Int. J. Engng. Sci., 29, 649–661

    Google Scholar 

  63. Johnson, G.; Massoudi, M., Rajagopal, K. R., 1991c: Couette flow of a fluid with entrained solid particles.Rec. Adv. Mech. Strctd. Cont., AMD- 117, 97–105

    Google Scholar 

  64. Johnson, P. C.; Jackson, R., 1987: Frictional-collisional constitutive relations for granular materials, with application to plane shearing.J. Fluid Mech., 176, 67–93

    Google Scholar 

  65. Johnson, P. C.; Nott, P.; Jackson, R., 1990: Frictional-collisional equations of motion for particulate flows and their application to chutes.J. Fluid Mech., 210, 501–535

    Google Scholar 

  66. Kadambi, J.R.; Chen, R.C.; Bunia, S., 1989: Laser velocimeter measurements of multiphase flow of solids.Technical Report, U.S. Department of Energy, DOE/ PETC-90961-T9

  67. Kanatani, K. I., 1979: A micropolar continuum theory for the flow of granular materials.Int. J. Engng. Sci., 17, 419–432

    Google Scholar 

  68. Kolmogoroff, A., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers.Comptes rend. de l'Acad. de Sci. de l'USSR, 30, 301–305

    Google Scholar 

  69. Liu Ko-fei; Mei, C. C., 1991: Rapid flow of a Bingham-plastic fluid down a gentle slope.J. Fluid Mechanics (submitted)

  70. Lun, C. K. K.; Savage, S. B.; Jeffrey, D. J.; Chepurniy, N., 1984: Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field.J. Fluid Mech., 140, 223–256

    Google Scholar 

  71. Ma, D.; Ahmadi, G., 1985: A turbulence model for rapid flows of granular materials, Part II. Simple Shear Flows.Powder Tech., 44, p. 269–279

    Google Scholar 

  72. Ma, D.; Ahmadi, G., 1988: A kinetic model for rapid granular flows of nearly elastic particles including interstitial fluid effects.Powder Tech., 56, p. 191

    Google Scholar 

  73. Massoudi, M., 1986: Application of mixture theory to fluidized beds.Ph. D. Thesis, University of Pittsburgh

  74. Massoudi, M., 1988: Stability analysis of fluidized beds.Int. Journal of Engineering Science, 26, 765

    Google Scholar 

  75. Massoudi, M.; Boyle, E. J., 1991: A review of theories for flowing granular materials with applications to fluidized beds and solids transport.U.S. Department of energy Report, DOE/PETC/TR-91/8

  76. Maxwell, B.; Chartoff, R.P., 1965: Studies of a polymer melt in an othogonal rheometer.Trans. Soc. Rheology, 9, 51

    Google Scholar 

  77. McQuarrie, V.V., 1976:Statistical mechanics, Haper and Row, New York

    Google Scholar 

  78. McTigue, D. F., 1982: A nonlinear continuum theory for flowing granular materials.Ph. D. Thesis, Dept. of Geol, Stanford University

  79. McTigue, D. F., 1982: A nonlinear constitutive model for granular materials: application to gravity flow.J. of Appl. Mech., 49, 291–296

    Google Scholar 

  80. Middleton, G. V., 1970: Experimental studies related to problem of flysch sedimentation. In:Flysch Sedimentology in North America (Lajoie, J., ed.), Business and Economics Science Ltd., Toronto, 253–272

    Google Scholar 

  81. Middleton, G. V.; Hampton, M. A., 1976: Subaqueous sediment transport and deposition by sediment gravity flows. In:Marine Sediment Transport and Environmental Management (Stanley, D. J. and Swift D. J. P., eds.), Wiley, New York, 197–218

    Google Scholar 

  82. Naylor, M. A., 1980: The origin of inverse grading in muddy debris flow deposits-A review.J. Sedimentary Petrology, 50, 1111–1116

    Google Scholar 

  83. Nedderman, R. M.; Tuzun, U., Savage, S. B.; Houlsby, G. T., 1982: The flow of granular materials, I. Discharge rates from hoppers.Chem. Engng. Sci., 37, 1597–1609

    Google Scholar 

  84. Noll, W., 1962: Motions with constant stretch history.Arch. Rational Mech. Anal., 11, 97–105

    Google Scholar 

  85. Norem, H.; Irgens, F.; Schieldrop, B. A., 1987: A continuum model for calculating snow avalanches. In:Avalanche Formation. Movement and Effects, (Salm, B. and Gubler, H., eds.), IAHS Publ. No. 126, 363–379

  86. Novosad, J., 1964: Studies on granular materials, II. Apparatus for measuring the dynamic angle of internal and external friction of granular materials.Collection Czechoslov. Chem. Commun., 29. No. 2697

  87. Nunziato, J. W.; Passman, S. L.; Thomas Jr.; J. P., 1980: Gravitational flows of granular materials with incompressible grains.J. of Rheology, 24, 395–420

    Google Scholar 

  88. Ogawa, S., 1978: Multitemperature theory of granular materials. In:Proc. Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials, (S. C. Cowin and M. Satake, eds.) US-Japan Seminar, Sendai, Japan, pp. 208–217

  89. Ogawa, S.; Umemura, A.; Oshima, N. 1980: On the equations of fully fluidized granular matrials.ZAMP, 31, pp. 483–493

    Google Scholar 

  90. Oppenheim, I., 1991: Statistical mechanical theory of inelastic granular systems.Joint NSF-DOE workshop on Flow of Particulates and Fluids, October 22–24, Worcester Polytechnic Institute, Worcester, 236–253

  91. Oppenheim, I.; McBride, J.,1990: Transport equations for suspensions of inelastic particles.Physica A, 165, 279–302

    Google Scholar 

  92. Passman, S. L.; Nunziato, J. W.; Bailey, P. B.; Thomas Jr., J. P., 1980: Shearing flows of granular materials.J. Engg. Mech. Div., ASCE, 106, 773–783

    Google Scholar 

  93. Poynting, G. H., 1905: Radiation-pressure.Phil. Magazine, 9, 335–346

    Google Scholar 

  94. Rajagopal, K. R., 1982: On the flow of a simple fluid in an orthogonal rheometer.Arch. Rational Mech. Anal., 79, 29

    Google Scholar 

  95. Rajagopal, K. R.; Gudhe, R., 1992: Stability of the flow of granular materials down an inclined plane.Fourth NSF-DOE workshop on Flow of Particulates and Fluids, September 17–18, Gaithersburg, Maryland, 167–187

  96. Rajagopal, K. R.; Gudhe, R., 1993: Stability analysis for the flow of granular materials down an inclined plane using kinetic model.Fifth NSF-DOE workshop on Flow of Particulates and Fluids, Cornell

  97. Rajagopal, K. R.; Massoudi, M., 1990: A method for measuring material moduli of granular materials: flow in an orthogonal rheometer. Topical Report U, Department of Energy. DOE/PETC/TR-90/3

  98. Rajagopal, K. R.; Massoudi, M.; Ekmann, J.M., 1990: Mathematical modeling of fluid-solid mixtures.In Recent Developments in Structural Continua II, Longman

  99. Rajagopal, K. R.; Troy, W. C.; Massoudi, M., 1992: Existence of solutions to the equations governing the flow of granular materials.Eur. J. Mech.,B/Fluids, 11, 265–276

    Google Scholar 

  100. Ratkai, G., 1976: Particle flow and mixing in vertically vibrated beds.Powder Tech., 15, 187–192

    Google Scholar 

  101. Reid, F., 1965: Fundamentals of statistical mechanics and thermal physics. McGraw Hill, New York

    Google Scholar 

  102. Reiner, M., 1945: A mathematical theory of dilatancy.Am. J. Math, 67, 350–362

    Google Scholar 

  103. Reynolds, O., 1885. On the dilatancy of media composed of rigid particles in contact.Phil. Mag. Ser. 5, 20, 469–481

    Google Scholar 

  104. Richman, M. W., 1988: Boundary conditions based upon a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres.Acta Mech. 75, 227–240.

    Google Scholar 

  105. Richman, M. W.; Marciniec, R. P., 1990: Gravity-driven granular flows of smooth, inelastic spheres down bumpy inclines.J. Appl. Mech. 57, 1036–1043

    Google Scholar 

  106. Sallenger, A. H., 1979: Inverse grading and hydraulic equivalence in grain-flow deposits.J. Sedimentary Petrology, 49, 553–562

    Google Scholar 

  107. Savage, S. B., 1979: Gravity flow of cohesionless granular materials in chutes and channels.J. Fluid Mech., 92, 53–96

    Google Scholar 

  108. Savage, S. B., 1983: Granular flows down rough inclines-Review and extension. In:Mechanics of Granular Materials: New Models and Constitutive Relations (Jenkins, J. T. and Satake, M., eds.), Elsevier, pp. 261–82

  109. Savage, S. B., 1984: The mechanics of rapid granular flows. In:Advances in Applied Mechanics, 24 (Wu, T. Y. and Hutchinson, J., eds.), Academic, 289–366

  110. Savage, S. B., 1987: Interparticle percolation and segregation in granular materials: A review. In:Developments in Engineering Mechanics (Selvadurai, A.P.S., ed.), Elsevier, Amsterdam, 347–363

    Google Scholar 

  111. Savage, S. B., 1988. Streaming motions in a bed of vibrationally fluidized dry granular material.J. Fluid Mech., 194, 457–478

    Google Scholar 

  112. Savage, S. B., 1989: Flow of granular materials. In:Theoretical and Applied Mechanics (P. Germain, M. Piau and D. Caillerie eds., Elsevier Science Publishers B. V., North-Holland. iutam, 241–266

    Google Scholar 

  113. Savage, S. B., 1993: Mechanics of granular flows. In:Continuum mechanics in environmental sciences and geophysics (K. Hutter, ed.) CISM Courses and Lectures No. 337, Springer Verlag, Vienna-New York

    Google Scholar 

  114. Savage, S. B.; Hutter, K., 1989: The motion of a finite mass of granular material down a rough incline.J. Fluid Mech., 199, 177–215.

    Google Scholar 

  115. Savage, S. B.; Hutter, K., 1991: The dynamics of avalanches of granular materials from initiation to runout. Part I. Analysis.Acta Mech., 86, 201–223

    Google Scholar 

  116. Savage, S. B.; Jeffrey, D. J., 1981: The stress tensor in a granular flow at high shear rates.J. Fluid Mech., 110, 255–272

    Google Scholar 

  117. Savage, S. B.; Lun, C. K. K., 1988: Particle size segregation in inclined chute flow of dry cohesionless granular solids.J. Fluid Mech., 189, 311–335

    Google Scholar 

  118. Savage, S. B.; McKeown, S., 1983: Shear stresses developed during rapid shear of dense concentrations of large spherical particles between concentric rotating cylinders.J. Fluid Mech., 127, 453–472

    Google Scholar 

  119. Savage, S. B.; Nohguchi, Y., 1988: Similartiy solutions for avalanches of granular materials down curved beds.Acta Mechanica, 75, 153–174

    Google Scholar 

  120. Savage, S. B.; Sayed, M., 1984: Stresses developed by dry cohesionless granular materials sheared in an annular shear cell.J. Fluid Mech., 142, 391–430

    Google Scholar 

  121. Savage, S. B.; Nedderman, R. M.; Tuzan, U.; Houlsby, G. T., 1983: The flow of granular materials, III. Rapid shear flows.Chem. Engng. Sci., 38, 189–195

    Google Scholar 

  122. Scheiwiller, T.; Hutter, K., 1982: Lawinendynamik, Übersicht über Experimente und theoretische Modelle von Fließ-und Staublawinen.Mitteilung No. 5 für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, 166 pp

  123. Schofield, A. N.; Wroth, C. P., 1968:Critical State Soil Mechanics, McGraw-Hill, New York

    Google Scholar 

  124. Scott, R. F., 1963:Principles of Soil Mechanics, Addison Wesley, Reading

    Google Scholar 

  125. Shahinpoor, M.; Ahmadi, G., 1983: A kinetic theory for the rapid flow of rough inelastic spherical particles and the evolution of fluctuations. In:Advances in the mechanics and the flow of granular materials (M. Shahimpoor, ed.), Vol. II, 641–667.Gulf Publ. Comp. Houston

  126. Shahinpoor, M.; Lin, S. P. 1982: Rapid Couette flow of cohesionless granular materials.Acta Mechanica. 42, 183–196

    Google Scholar 

  127. Spencer, A. J. M., 1964: A theory of the kinematics of ideal solids under plane strain conditions.J. Mech. Phys. Solids, 12, 337–351

    Google Scholar 

  128. Squire, H. B., 1933: On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls.Proc. Roy. Soc., A, 142, 621–628

    Google Scholar 

  129. Stadler, R., 1986: Stationäres, schnelles Fließen von dicht gepackten trockenen und feuchten Schüttgütern.Dr.-Ing. Dissertation, Univ. Karlsruhe, Karlsruhe, West Germany

    Google Scholar 

  130. Stadler, R.; Buggisch, H., 1985: Influence of the deformation rate on shear stress in bulk solids: Theoretical aspects and experimental results. In:Reliable Flow of Particulate Solids (EFCE Publication Series No. 49, Bergen, Norway), pp. 15

  131. Szidarovszky, F.; Hutter, K.; Yakowitz, S., 1987: A numerical sudy of steady plane granular chute flows using the Jenkins-Savage model and its extension.Int. J. Num. Meth. Engng., 24, 1993–2015

    Google Scholar 

  132. Takahashi, T., 1981: Debris flow.Ann. Rev. Fluid Mech., 13, 57–77

    Google Scholar 

  133. Takahashi, T., 1983: Debris flow and debris flow deposition. In:Advances in the Mechanics and Flow of Granular Materials, (Shahinpoor, M., ed.), Vol. II,Gulf Publ. Company, Houston, 57–77

    Google Scholar 

  134. Thomson, W.; Tait, P.G., 1867:Treatise on Natural Philosophy, Part I, Cambridge

  135. Truesdell, C.; Noll, W., 1965: The non-linear field theories of mechanics. In:Handbuch der Physik, III/3, ed. Flugge, Springer-Verlag

  136. Tuzan, U.; Houlsby, G. T.; Nedderman, R. M.; Savage, S. B., 1982: The flow of granular materials, II. Velocity distributions in slow flows.Chem. Engng. Sci., 37, 1691–1709

    Google Scholar 

  137. Van Kampen, N.G.; Oppenheim, I. 1986: Brownian motion as a problem of eliminating fast variables.Physica A, 138, 231–248

    Google Scholar 

  138. Walker, J., 1982: The amateur scientist.Scientific American, 247, 206–216

    Google Scholar 

  139. Walton, O.R., 1991: Numerical simulation of inclined chute flows of nondisperse, inelastic, frictional spheres.Joint NSF-DOE workshop on Flow of Particulates and Fluids, October 1991, Worcester Polytechnic Institute, Worcester, 347–355

  140. Walton, O. R.; Braun, R. L., 1986: Stress calculations for assemblies of inelastic spheres in uniform shear.Acta Mechanica, Vol. 63, p. 73

    Google Scholar 

  141. Yalamanchili, R.C.; Gudhe, R.; Rajagopal, K.R., Cohesionless granular materials flow in a vertical channel under the action of gravity.In Preparation

  142. Yih, C.S., 1954: Stability of two-dimensional parallel flows for three-dimensional disturbances.Quaterly of Applied Math., 12

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr.-Ing. Franz Gustav Kollmann on the occasion of his sixtieth brithday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutter, K., Rajagopal, K.R. On flows of granular materials. Continuum Mech. Thermodyn 6, 81–139 (1994). https://doi.org/10.1007/BF01140894

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01140894

Keywords

Navigation