Skip to main content
Log in

On a generalized nonlinearK-ɛ model for turbulence that models relaxation effects

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this paper, based on a similarity that exists between the constitutive relations for turbulent mean flow of a Newtonian fluid and that for the laminar flow of a non-Newtonian fluid, and making use of extended thermodynamics, we develop a generalized nonlinearK-ɛ model, whose approximate form includes the standardK-ɛ model and the nonlinearK-ɛ model of Speziale (1987) as special cases. Our nonlinearK-ɛ model, which is frame indifferent, can predict relaxation of the Reynolds stress, unlike most standardK-ɛ models. Also, our model is in keeping with that of Yakhotet al. (1992). Most interestingly, the linearized form of our model bears a striking resemblance to the model due to Yoshizawa and Nisizima (1993); however, it has been obtained from a totally different perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bardina, J., Ferziger, J.H., and Reynolds, W.C. (1983). Improved turbulence models based on large-eddy simulation of homogeneous, incompressible turbulent flows. Technical Report No. TF-19, Stanford University, Stanford, CA, 1983.

    Google Scholar 

  • Crow, S.C. (1968). Viscoelastic properties of fine grained incompressible turbulence.J. Fluid Mech. 33(1), 1–20.

    Google Scholar 

  • Friedrichs, K.O., and Lax, P.D. (1971). Systems of conservation equations with a convex extension.Proc. Nat. Acad. Sci. U.S.A.,68, 1686–1688.

    Google Scholar 

  • Gatski, T.B., and Speziale, C.G. (1993). On explicit algebraic stress models for complex turbulent flows.J. Fluid Mech.,254, 59–78.

    Google Scholar 

  • Huang, Y.-N., and Rajagopal, K.R. (1995). On necessary and sufficient conditions for fully-developed turbulent secondary flow in a straight tube.Math. Models Methods Appl. Sci.,1(5), 111–123.

    Google Scholar 

  • Huang, Y.-N., and Rajagopal, K.R. (1994). On the origin of laminar steady secondary flow of non-Newtonian fluids in straight tubes. Submitted for publication.

  • Kremer, G.M. (1985). Zur erweiterten Thermodynamik idealer und dichter Gase. Dissertation, Technische Universität, Berlin.

    Google Scholar 

  • Kremer, G.M. (1987). Extended thermodynamics of non-ideal gases.Phys. A,144, 156–178.

    Google Scholar 

  • Kremer, G.M., and Beevers, C. (1984). Extended thermodynamics of dense gases. InRecent Developments in Non-Equilibrium Thermodynamics (J. Casas-Vázque, D. Jou, and G. Lebon, eds.), pp. 429–436. Lecture Notes in Physics, Vol. 199. Springer-Verlag, Berlin.

    Google Scholar 

  • Launder, B.E., and Spalding, D.B. (1974). The numerical computation of turbulent flows.Comput. Methods Appl. Mech. Engrg.,3, 269–289.

    Google Scholar 

  • Lax, P.D. (1972).Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA.

    Google Scholar 

  • Liu, I.-S. (1972). Method of Lagrange multipliers for exploitation of entropy principle.Arch. Rational Mech. Anal.,46, 131–148.

    Google Scholar 

  • Liu, I.-S., and Müller, I. (1983). Extended thermodynamics of classical and degenerate ideal gases.Arch. Rational Mech. Anal.,83, 285–331.

    Google Scholar 

  • Marshall, J., and Naghdi, P.M. (1989).Philos. Trans. Roy. Soc. London. Ser. A,327, 415–435.

    Google Scholar 

  • Müller, I. (1966). Zur Ausbreitungsgeschwindigkeit von Störungen in kontinuierlichen Medien. Dissertation, Technische Hochschule, Aachen.

    Google Scholar 

  • Müller, I., and Wilmanski, K. (1986). Extended thermodynamics of a non-Newtonian fluid.Rheol. Acta,25, 335–349.

    Google Scholar 

  • Nikuradse, J. (1926). Untersuchungen über die Geschwindigkeitsverteilung in turbulente Strömungen. Thesis, V.D.I.-Forsch. 76, Göttingen.

  • Nikuradse, J. (1930). Turbulente Strömung in nicht-kreisförmigen Rohren.Ing. Arch.,1, 306–332.

    Google Scholar 

  • Pope, S.B. (1975). A more general effective viscosity hypothesis.J. Fluid Mech.,72, 331–340.

    Google Scholar 

  • Rivlin, R.S. (1957). The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids.Quart. Appl. Math.,15, 212–214.

    Google Scholar 

  • Smith, G.F. (1970). On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors.Internat. J. Engrg. Sci.,9, 889–916.

    Google Scholar 

  • Speziale, C.G. (1987). On nonlinearK-l andK-ɛ models of turbulence.J. Fluid Mech.,178, 459–475.

    Google Scholar 

  • Speziale, C.G. (1991).Ann. Rev. Fluid Mech.,23, 107–130.

    Google Scholar 

  • Taulbee, D.B. (1992). An improved algebraic Reynolds stress model and corresponding non-linear stress model.Phys. Fluids A,4, 2555–2561.

    Google Scholar 

  • Wang, C.C. (1970). A new representation theorem for isotropic functions, I and II.Arch. Rational Mech. Anal.,36, 166–223.

    Google Scholar 

  • Wang, C.C. (1971). Corrigendum to “Representations for isotropic functions.”Arch. Rational Mech. Anal.,43, 392–395.

    Google Scholar 

  • Yakhot, Y., Orszag, S.A., Thangam, S., Gatski, T.B., and Speziale, C.G. (1992). Development of turbulence models for shear flows by a double expansion technique.Phys. Fluids A,4(7), 1510–1520.

    Google Scholar 

  • Yoshizawa, A., and Nisizima, S. (1993). A nonequilibrium representation of the turbulent viscosity based on a two-scale turbulence theory.Phys. Fluid A,5(12), 3302–3304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.Y. Hussaini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y.N., Rajagopal, K.R. On a generalized nonlinearK-ɛ model for turbulence that models relaxation effects. Theoret. Comput. Fluid Dynamics 8, 275–288 (1996). https://doi.org/10.1007/BF00639696

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00639696

Keywords

Navigation