Skip to main content
Log in

Free tryptophan pool and tryptophan biosynthetic enzymes in Saccharomyces cerevisiae

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The free tryptophan pool and the levels of two enzymes of tryptophan biosynthesis (anthranilate synthase and indoleglycerolphosphate synthase) have been determined in a wild type strain of Saccharomyces cerevisiae and in mutants with altered regulatory properties.

The tryptophan pool of wild type cells growing in minimal medium is 0.07 μmole per g dry weight. Addition of anthranilate, indole or tryptophan to the medium produces a fifteen- to forty-fold increase in tryptophan pool, but causes no repression of the biosynthetic enzymes. Inclusion of 5-methyltryptophan in the growth medium causes a reduction in growth rate and a derepression of the biosynthetic enzymes, and this is shown here not to be correlated with a decrease in the free tryptophan pool.

Mutants with an altered anthranilate synthase showing decreased sensitivity to inhibition by l-tryptophan or by the analogue dl-5-methyltryptophan have a tryptophan pool far higher than the wild type strain, but no repression of indoleglycerolphosphate synthase was observed. Mutants with an anthranilate synthase more sensitive to tryptophan inhibition show a slightly reduced tryptophan pool, but no derepression of indoleglycerolphosphate synthase was found.

A mutant with constitutively derepressed levels of the biosynthetic enzymes shows a considerably increased tryptophan pool. Addition of 5-methyltryptophan to the growth medium of non-derepressible mutants causes a decrease in growth rate accompanied by a decrease in the tryptophan pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDRP:

1-(o-carboxyphenylamino)-1-deoxyribulosephosphate

paba:

paraaminobenzoic acid

PRA:

N-(5′-phosphoribosyl)-anthranilate

tRNA:

transfer ribonucleic acid; trp1 to trp5 refer to the structural genes for corresponding tryptophan biosynthetic enzymes

References

  • Adams, B. G.: Method for decryptification of α-glucosidase in yeast with dimethyl sulfoxide. Analyt. Biochem. 45, 137–146 (1972)

    Google Scholar 

  • Bearden, L., Moses, V.: Compartmentation in histidine biosynthesis. Biochim. biophys. Acta (Amst.) 279, 513–526 (1972)

    Google Scholar 

  • Cowie, D. B., McClure, F. T.: Metabolic pools and the synthesis of macromolecules. Biochim. biophys. Acta (Amst.) 31, 236–245 (1959)

    Google Scholar 

  • DeMoss, J. A.: Studies on the mechanism of the tryptophan synthetase reaction. Biochim. biophys. Acta (Amst.) 62, 279–293 (1962)

    Google Scholar 

  • Difco Manual (ifco Laboratories Inc. Detroit, Michigan): Micro assay culture agar/tryptophan assay medium, 9th ed., pp. 212–213, 235–236 (1953)

  • Doolittle, W. F., Yanofsky, C.: Mutants of Escherichia coli with an altered tryptophanyl-transfer ribonucleic acid synthetase. J. Bact. 95, 1283–1294 (1968)

    Google Scholar 

  • Doy, C. H., Cooper, J. M.: Aromatic biosynthesis in yeast. I. The synthesis of tryptophan and the regulation of this pathway. Biochim. biophys. Acta (Amst.) 127, 302–316 (1966)

    Google Scholar 

  • Egan, A. F., Gibson, F.: Anthranilate synthase and anthranilate-5′-phosphoribosyl-1-pyrophosphate phosphoribosyl transferase (PR transferase) aggregate from Aerobacter aerogenes. In: Methods in enzymology, Vol. 17A (H. Tabor, C. W. Tabor, eds.), pp. 380–382. London-New York: Academic Press 1970

    Google Scholar 

  • Epstein, W., Beckwith, J.: Regulation of gene expression. Ann. Rev. Biochem. 37, 411–436 (1968)

    Google Scholar 

  • Gancedo, J. M., Gancedo, C.: Concentration of intermediary metabolites in yeast. Biochimie 55, 205–211 (1973)

    Google Scholar 

  • Gibson, F.: Preparation of chorismic acid. In: Methods in enzymology, Vol. 17A (H. Tabor, C. W. Tabor, eds.), pp. 362–364. New York: Academic Press 1970

    Google Scholar 

  • Gross, S. R.: The regulation of synthesis of leucine biosynthetic enzymes in neurospora. Proc. nat. Acad. Sci. (Wash.) 54, 1538–1546 (1965)

    Google Scholar 

  • Gross, S. R.: Genetic regulatory mechanisms in the fungi. Ann. Rev. Genet. 3, 395–424 (1969)

    Google Scholar 

  • Herbert, D., Phipps, P. J., Strange, R. E.: Chemical analysis of microbial cells. In: Methods in microbiology, Vol. 5B (J. R. Norris, D. W. Ribbons, eds.), pp. 209–344. London-New York: Academic Press 1971

    Google Scholar 

  • Hütter, R., DeMoss, J. A.: Organisation of the tryptophan pathway: A phylogenetic study of the fungi. J. Bact. 94, 1896–1907 (1967)

    Google Scholar 

  • Kacser, H., Burns, J. A.: Causality, complexity and computer. In: Quantitative biology of metabolism, Proc. 3rd. Internat. Symp. (A. Locker, ed.), pp. 11–23. Berlin-Heidelberg-New York: Springer 1968

    Google Scholar 

  • Lester, G.: Regulation of tryptophan biosynthetic enzymes in Neurospora crassa. J. Bact. 107, 193–202 (1971)

    Google Scholar 

  • Lingens, F., Goebel, W., Uesseler, H.: Regulation der Biosynthese der aromatischen Aminosäuren in Saccharomyces cerevisiae. I. Hemmung der Enzymaktivität (Feedback-Wirkung). Biochem. Z. 346, 357–367 (1966)

    Google Scholar 

  • Masselot, M., De Robichon-Szulmajster, H.: Methionine biosynthesis in Saccharomyces cerevisiae: Mutations at the regulatory locus ETH2. II. Physiological and biochemical data. Molec. Gen. Genet. 129, 349–362 (1974)

    Google Scholar 

  • Matchett, W. H., Turner, J. R., Wiley, W. R.: The role of tryptophan in the physiology of Neurospora. Yale J. Biol. Med. 40, 257–283 (1968)

    Google Scholar 

  • Messineo, L., Musarra, E.: A sensitive spectrophotometric method for the determination of free or bound tryptophan. Int. J. Biochem. 3, 700–704 (1972)

    Google Scholar 

  • Nazario, M., Kinsey, J. A., Ahmad, M.: Neurospora mutant deficient in tryptophanyltransfer ribonucleic acid synthetase activity. J. Bact. 105, 121–126 (1971)

    Google Scholar 

  • Ramos, F., Thuriaux, P., Wiame, J. M., Bechet, J.: The participation of ornithine and citrulline in the regulation of arginine metabolism in Saccharomyces cerevisiae. Europ. J. Biochem. 12, 40–47 (1970)

    Google Scholar 

  • Rasse-Messenguy, F., Fink, G. R.: Feedback-resistant mutants of histidine biosynthesis in yeast. Basic Life Sci. 2, 85–95 (1973)

    Google Scholar 

  • De Robichon-Szulmajster, H., Surdin-Kerjan, Y.: Nucleic acid and protein synthesis in yeasts: Regulation of synthesis and activity. In: The yeasts, Vol. 2 (A. H. Rose, J. S. Harrison, eds.), pp. 335–418. London-New York: Academic Press 1971

    Google Scholar 

  • Schürch, A. R.: Zur Regulation der Tryptophan-Biosynthese bei Saccharomyces cerevisiae. Dissertation ETHZ Nr. 4862. Zürich: Juris 1972

    Google Scholar 

  • Schürch, A., Miozzari, J., Hütter, R.: Regulation of tryptophan biosynthesis in Saccharomyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan-sensitive mutants. J. Bact. 117, 1131–1140 (1974)

    Google Scholar 

  • Shetty, A. S., Gaertner, F. H.: Activities in microorganisms: Occurrence and properties of a single physiologically discrete enzyme in yeast. J. Bact. 113, 1127–1133 (1973)

    Google Scholar 

  • Smith, O. H., Yanofsky, C.: Enzymes involved in the biosynthesis of tryptophan. In: Methods in enzymology, Vol. 5 (S. P. Colowick, N. O. Kaplan, eds.), pp. 794–806. London-New York: Academic Press 1962

    Google Scholar 

  • Spoerl, E., Carleton, R.: Studies on cell division. Nitrogen compound changes in yeast accompanying an inhibition of cell division. J. biol. Chem. 210, 521–529 (1954)

    Google Scholar 

  • Stebbing, N.: Growth and changes in pool and macromolecular components of Schizosaccharomyces pombe during the cell cycle. J. Cell Sci. 9, 701–717 (1971)

    Google Scholar 

  • Weiss, R. L., Kukora, J. R., Adams, J.: The relationship between enzyme activity, cell geometry, and fitness in Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 72, 794–798 (1975)

    Google Scholar 

  • Wiame, J. M.: Mechanism of the interaction between anabolism and catabolism of arginine in Saccharomyces cerevisiae. In: Recent advances in microbiology (A. Pérez-Miravete, D. Pelaez, eds.), pp. 243–253. Mexico, D.F.: Xth International Congress for Microbiology 1971

  • Wiemken, A., Nurse, P.: The vacuole as a compartment of amino acid pools in yeast. In: Proc. 3rd. Int. Symp. on Yeast, Part II (H. Suomalainen, C. Waller, eds.), pp. 331–347. Helsinki: Print Oy 1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fantes, P.A., Roberts, L.M. & Huetter, R. Free tryptophan pool and tryptophan biosynthetic enzymes in Saccharomyces cerevisiae . Arch. Microbiol. 107, 207–214 (1976). https://doi.org/10.1007/BF00446842

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446842

Key words

Navigation