Skip to main content
Log in

Fumarate reduction inProteus mirabilis

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

  1. 1.

    Proteus mirabilis formed fumarate reductase under anaerobic growth conditions. The formation of this reductase was repressed under conditions of growth during which electron transport to oxygen or to nitrate is possible. In two of three tested chlorateresistant mutant strains of the wild type, fumarate reductase appeared to be affected.

  2. 2.

    Cytoplasmic membrane suspensions isolated from anaerobically grownP. mirabilis oxidized formate and NADH with oxygen and with fumarate, too.

  3. 3.

    Spectral investigation of the cytoplasmic membrane preparation revealed the presence of (probably at least two types of) cytochromeb, cytochromea 1 and cytochromed. Cytochromeb was reduced by NADH as well as by formate to approximately 80%.

  4. 4.

    2-n-Heptyl-4-hydroxyquinoline-N-oxide and antimycin A inhibited oxidation of both formate and NADH by oxygen and fumarate. Both inhibitors increased the level of the formate/oxygen steady state and the formate/fumarate steady state.

  5. 5.

    The site of inhibition of the respiratory activity by both HQNO and antimycin A was located at the oxidation side of cytochromeb.

  6. 6.

    The effect of ultraviolet-irradiation of cytoplasmic membrane suspensions on oxidation/reduction phenomena suggested that the role of menaquinone is more exclusive in the formate/fumarate pathway than in the electron transport route to oxygen.

  7. 7.

    Finally, the conclusion has been drawn that the preferential route for electron transport from formate and from NADH to fumarate (and to oxygen) includes cytochromeb as a directly involved carrier. A hypothetical scheme for the electron transport in anaerobically grownP. mirabilis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HQNO:

2-n-heptyl-4-hydroxyquinoline-N-oxide

NADH:

reduced nicotinamide adenine dinucleotide

References

  • van der Beek, E. G.: Oxidative phosphorylation and electron transport inProteus mirabilis. Ph. D. Thesis, Free University, Amsterdam (1976)

    Google Scholar 

  • Bonartzeva, G. A., Taptykova, S. D., Vorobieva, L. I., Krainova, O. A., Briukhacheva, N. L.: Aerobic metabolism of propionic bacteria. Mikrobiologiya42, 765–771 (1973)

    Google Scholar 

  • Enoch, H. G., Lester, R. L.: The purification and properties of formate dehydrogenase and nitrate reductase fromEscherichia coli. J. biol. Chem.250, 6693–6705 (1975)

    Google Scholar 

  • de Groot, G. N., Stouthamer, A. H.: Regulation of reductase formation inProteus mirabilis. I. Formation of reductases and enzymes of the formic hydrogenlyase complex in the wild type and in chlorate-resistant mutants. Arch. Mikrobiol.66, 220–233 (1969)

    Google Scholar 

  • de Groot, G. N., Stouthamer, A. H.: Regulation of reductase formation inProteus mirabilis. II. Influence of growth with azide and of haem deficiency on nitrate reductase formation. Biochim. biophys. Acta (Amst.)208, 414–427 (1970a)

    Google Scholar 

  • de Groot, G. N., Stouthamer, A. H.: Regulation of reductase formation inProteus mirabilis. III. Influence of oxygen, nitrate and azide on thiosulfate reductase and tetrathionate reductase formation. Arch. Mikrobiol.74, 326–339 (1970b)

    Google Scholar 

  • Haddock, B. A., Downie, J. A., Garland, P. B.: Kinetic characterization of the membrane-bound cytochromes ofEscherichia coli grown under a variety of conditions by using a stopped-flow dual-wavelength spectrophotometer. Biochem. J.154, 285–294 (1976)

    Google Scholar 

  • Hatchikian, E. C., LeGall, J.: Evidence for the presence of ab-type cytochrome in the sulfate-reducing bacteriumDesulfovibrio gigas and its role in the reduction of fumarate by molecular hydrogen. Biochim. biophys. Acta (Amst.)267, 479–484 (1972)

    Google Scholar 

  • Hendler, R. W., Towne, D. W., Shrager, R. I.: Redoxproperties ofb-type cytochromes inEscherichia coli and rat liver mitochondria and techniques for their analysis. Biochim. biophys. Acta (Amst.)376, 42–62 (1975)

    Google Scholar 

  • Hobson, P. N., Summers, R.: ATP pool and growth yield inSelenomonas ruminantium. J. gen. Microbiol.70, 351–360 (1972)

    Google Scholar 

  • Jacobs, N. J., Jacobs, J. M.: Fumarate as alternate electron acceptor for the late steps of anaerobic heme synthesis inEscherichia coli. Biochem. biophys. Res. Commun.65, 435–441 (1975)

    Google Scholar 

  • Knook, D. L., Kauffman, H. F., Van 't Riet, J.: Different effects of 2-n-heptyl-4-hydroxyquinoline-N-oxide on oxygen and nitrate respiration inKlebsiella aerogenes. Arch. Biochem. Biophys.165, 449–455 (1974)

    Google Scholar 

  • Kröger, A.: Electron transport phosphorylation coupled to fumarate reduction in anaerobically grownProteus rettgeri. Biochim. biophys. Acta (Amst.)347, 273–289 (1974)

    Google Scholar 

  • Kröger, A., Dadák, V., Klingenberg, M., Diemer, F.: On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone inProteus rettgeri. Eur. J. Biochem.21, 322–333 (1971)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265–275 (1951)

    Google Scholar 

  • Macy, J., Probst, I., Gottschalk, G.: Evidence for cytochrome involvement in fumarate reduction and adenosine 5′-triphosphate synthesis byBacteroides fragilis grown in the presence of hemin. J. Bact.123, 436–442 (1975)

    Google Scholar 

  • Newton, N. A., Cox, G. B., Gibson, F.: The function of menaquinone (vitamin K2) inEscherichia coli K-12. Biochim. biophys. Acta (Amst.)244, 155–166 (1971)

    Google Scholar 

  • Oltmann, L. F., Van der Beek, E. G., Stouthamer, A. H.: Reduction of inorganic sulphur compounds by facultatively aerobic bacteria. Plant and Soil43, 153–169 (1975)

    Google Scholar 

  • Oltmann, L. F., Stouthamer, A. H.: Purification of cytoplasmic membranes and outer membranes fromProteus mirabilis. Arch. Mikrobiol.93, 311–325 (1973)

    Google Scholar 

  • Oltmann, L. F., Stouthamer, A. H.: Reduction of tetrathionate, trithionate and thiosulphate, and oxidation of sulphide inProteus mirabilis. Arch. Microbiol.105, 135–142 (1975)

    Google Scholar 

  • Pichinoty, F., Piéchaud, M.: Recherche des nitrate-réductases bactériennes A et B: méthodes. Ann. Inst. Pasteur114, 77–98 (1968)

    Google Scholar 

  • Piéchaud, M., Puig, J., Pichinoty, F., Azoulay, E., Minor, L. le: Mutations affectant la nitrate réductase A et d'autres enzymes bactériennes d'oxydo-réduction. Étude préliminaire. Ann. Inst. Pasteur112, 24–37 (1967)

    Google Scholar 

  • Schwartz, A. C., Sporkenbach, J.: The electron transport system of the anaerobicPropionibacterium shermanii. Cytochrome and inhibitor studies. Arch. Microbiol.102, 261–273 (1975)

    Google Scholar 

  • Shipp, W. S.: Cytochromes ofEscherichia coli. Arch. Biochem. Biophys.150, 459–472 (1972a)

    Google Scholar 

  • Shipp, W. S.: Absorption bands of multipleb andc cytochromes in bacteria detected by numerical analysis of absorption spectra. Arch. Biochem. Biophys.150, 482–488 (1972b)

    Google Scholar 

  • Singh, A. P., Bragg, P. D.: Reduced nicotinamide adenine dinucleotide dependent reduction of fumarate coupled to membrane energization in a cytochrome deficient mutant ofEscherichia coli K12. Biochim. biophys. Acta (Amst.)396, 229–241 (1975)

    Google Scholar 

  • Sone, N.: The redox reactions in propionic acid fermentations. I. Occurrence and nature of an electron transfer system inPropionibacterium arabinosum. J. Biochem.71, 931–940 (1972)

    Google Scholar 

  • Stouthamer, A. H.: Nitrate reduction inAerobacter aerogenes. I. Isolation and properties of mutant strains blocked in nitrate assimilation and resistant against chlorate. Arch. Mikrobiol.56, 68–75 (1967a)

    Google Scholar 

  • Stouthamer, A. H.: Nitrate reduction inAerobacter aerogenes. II. Characterization of mutants blocked in the reduction of nitrate and chlorate. Arch. Mikrobiol.56, 76–80 (1967b)

    Google Scholar 

  • Stouthamer, A. H.: Biochemistry and genetics of nitrate reductase in bacteria. Advanc. micr. Physiol.14, 315–375 (1976)

    Google Scholar 

  • de Vries, W., Wijck-Kapteijn, W. M. C., van, Stouthamer, A. H.: Influence of oxygen on growth, cytochrome synthesis and fermentation pattern in propionic acid bacteria. J. gen. Microbiol.71, 515–524 (1972)

    Google Scholar 

  • de Vries, W., Wijck-Kapteijn, W. M. C., van, Stouthamer, A. H.: Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. J. gen. Microbiol.76, 31–41 (1973)

    Google Scholar 

  • de Vries, W., Wijck-Kapteijn, W. M. C., van, Oosterhuis, S. K. H.: The presence and function of cytochromes inSelenomonas ruminantium, Anaerovibrio lipolytica andVeillonella alcalescens. J. gen. Microbiol.81, 69–78 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Der Beek, E.G., Oltmann, L.F. & Stouthamer, A.H. Fumarate reduction inProteus mirabilis . Arch. Microbiol. 110, 195–206 (1976). https://doi.org/10.1007/BF00690228

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690228

Key words

Navigation