Skip to main content
Log in

Bacterial metabolism of substituted phenols

Oxidation of 4-(Methylmercapto)-and 4-(Methylsulfinyl)-Phenol by Nocardia spec. DSM 43251

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

4-(Methylmercapto)-phenol (MMP) and 4-(methylsulfinyl)-phenol (MSP) are oxidized by the soil isolate Nocardia spec. DSM 43251, which is closely related to Nocardia calcarea. The rate of degradation depends on the capability of a substrate to support growth and is strongly enhanced in the presence of a second carbon source under the conditions of cooxidation. MMP and MSP are cometabolized by hydroxylation of the benzene ring with the formation of the substituted catechol following by ring cleavage between carbon atoms 2 and 3 (“meta”fission) to give 2-hydroxy-5-methylmercapto-or 2-hydroxy-5-methylsulfinylmuconic semialdehyde. Oxidation of MMP to MSP represents a bypath of MMP-oxidation. The intermediates were identified on the basis of their physical properties. The enzymes responsible for the metabolism of MMP and MSP are induced by growth with MMP or MSP, but not with glucose. MMP- and MSP-induced cells catalyze the oxidation of a variety of substituted phenols. This indicates a rather low substrate specificity of the enzymes induced by MMP and MSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MMP:

4-(methylmercapto)-phenol

MSP:

4-(methylsulfinyl)-phenol

3M-4MMP:

3-(methyl)-4-(methylmercapto)-phenol

MMC:

4(methylmercapto)-catechol

MSC:

4-(methylsulfonyl)-catechol

MSV:

4-(methylsulfinyl)-veratrol

MSOP:

4-(methylsulfonyl)-phenol

MM-HMSA:

2-hydroxy-5-methylmercaptomuconic semialdehyde

MS-HMSA:

2-hydroxy-5-methylsulfinylmuconic semialdehyde

HMSA:

2-hydroxymuconic semialdehyde

d6-DMSO:

deuterated dimethylsulfoxide

CDCI3 :

deuterochloroform

tlc:

thin layer chromatography

References

  • Buchanan, R. E., Gibbons, N. E. (eds.): Bergey's manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins 1974

    Google Scholar 

  • Bull, D. L., Whitten, C. J., Ivie, G. W.: Fate of O-ethyl-O-[4-(methylthio)phenyl]-Spropyl phosphorodithioate (BAYNTN 9306) in cotton plants and soil. J. Agr. Food Chem. 24, 601–605 (1976)

    Google Scholar 

  • Chapman, P. J.: An outline of reaction sequences used for the bacterial degradation of phenolic compounds. In: Degradation of synthetic organic molecules in the biosphere, Proceedings of a conference, pp. 17–55, Natl. Acad. Sci., Washington, D.C. (1972)

    Google Scholar 

  • Dagley, S., Evans, C., Ribbons, D. W.: New pathways in the oxidative metabolism of aromatic compounds by microorganisms. Nature (Lond.) 188, 560–566 (1960)

    Google Scholar 

  • Dagley, S., Gibson, D. T.: The bacterial degradation of catechol. Biochem. J. 95, 466–474 (1965)

    Google Scholar 

  • DeBaun, J. R., Menn, J. J.: Sulfoxide reduction in relation to organophosphorus insecticide detoxification. Science 191, 187–188 (1976)

    Google Scholar 

  • Eistert, B., Regitz, M., Heck, G., Schwall, H.: Methoden zur Herstellung und Umwandlung von aliphatischen Diazoverbindungen. In: Methoden der organischen Chemie, S. 473–893 (Houben-Weyl, Hrsg.). Stuttgart:Thieme 1968

    Google Scholar 

  • Engelhardt, G., Wallnöfer, P. R., Hutzinger, O.: The microbial metabolism of di-n-butyl phthalate and related dialkyl phthalates. Bull. Environ. Contam. Toxicol. 13, 342–347 (1975)

    Google Scholar 

  • Engelhardt, G., Wallnöfer, P. R., Rast, H. G., Fiedler, F.: Metabolism of o-phthalic acid by different Gram-negative and Grampositive soil bacteria. Arch. Microbiol. 109, 109–114 (1976)

    Google Scholar 

  • Evans, W. C.: Microbial transformations of aromatic compounds. In: Fermentation advances, pp. 649–679 (D. Perlman, ed.). New York: Academic Press 1969

    Google Scholar 

  • Farr, D. R., Cain, R. B.: Catechol oxygenase induction in Pseudomonas aeruginosa. Biochem. J. 106, 879–885 (1968)

    Google Scholar 

  • Feist, C. F., Hegeman, G. D.: Phenol and benzoate metabolism by Pseudomonas putida: Regulation of tangential pathways. J. Bact. 100, 869–877 (1969)

    Google Scholar 

  • Fest, C., Schmidt, K. J. (ed.): The chemistry of organophosphorus pesticides. Berlin-Heidelberg-New York:Springer 1973

    Google Scholar 

  • Foster, J. W.: Bacterial oxidation of hydrocarbons. In: Oxygenases, pp. 241–271 (O. Hayaishi, ed.). New York: Academic Press 1962

    Google Scholar 

  • Hayaishi, O.: Enzymic hydroxylation. Ann. Rev. Biochem. 38, 21–44 (1969)

    Google Scholar 

  • Hegeman, C. D.: Synthesis of enzymes of the mandelate pathway in Pseudomonas putida. I. Synthesis of enzymes by the wild type. J. Bact. 91, 1140–1151 (1966)

    Google Scholar 

  • Hutzinger, O., Wallnöfer, P. R.: Microbial transformations of pesticides. In: Handbook of microbiology, Vol. IV (L. Lechevalier, ed.), pp. 459–502. Cleveland: CRC-Press 1974

    Google Scholar 

  • Kojima, N., Itada, Y., Hayaishi, O.: Metapyrocatechase: A new catechol-cleaving enzyme. J. biol. Chem., 236, 2223–2228 (1961)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A.L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Munnecke, D. M. M., Hsieh, D. P. H.: Pathways of microbial metabolism of parathion. Appl. Microbiol. 31, 63–69 (1976)

    Google Scholar 

  • Nozaki, M., Kotani, S., Ono, K., Senoh, S.: Metapyrocatechase. III. Substrate specificity and mode of ring fission. Biochim. biophys. Acta (Amst.) 220, 213–223 (1970)

    Google Scholar 

  • Ornston, L. N.: Regulation of catabolic pathways in Pseudomonas. Bact. Rev. 35, 87–116 (1971)

    Google Scholar 

  • Raymond, R. L., Jamison, V. W., Hudson, J. O.: Microbial hydrocarbon cooxidation. I. Oxidation of mono- and dicylic hydrocarbons by soil isolates of the genus Nocardia. Appl. Microbiol. 15, 357–365 (1967)

    Google Scholar 

  • Ripin, M. J., Cook, T. M., Noon, K. F., Stark, L. E.: Bacterial metabolism of arylsulfonates: Role of meta-cleavage in benzene sulfonate oxidation by Pseudomonas testosteroni. Appl. Microbiol. 29, 382–387 (1975)

    Google Scholar 

  • Rothera, A. C. H.: Note on the sodium nitro-prusside reaction for acetone. J. Physiol. (Lond.) 37, 491–494 (1908)

    Google Scholar 

  • Sala-Trepat, J. M., Evans, W. C.: The meta cleavage of catechol by Azotobacter species. 4-Oxalocrotonate pathway. Europ. J. Biochem. 20, 400–413 (1971)

    Google Scholar 

  • Seidman, M. M., Toms, A., Wood, J. M.: Influence of side-chain substituents on the position of cleavage of the benzene ring by Pseudomonas fluorescens. J. Bact. 97, 1192–1197 (1969)

    Google Scholar 

  • Stanier, R. Y., Palleroni, N. J. Doudoroff, M.: The aerobic pseudomonads: A taxonomic study. J. gen. Microbiol. 43, 159–171 (1966)

    Google Scholar 

  • Tabak, H. H., Chambers, C. W., Kabler, P. W.: Microbial metabolism of aromatic compounds. J. Bact. 87, 910–919 (1964)

    Google Scholar 

  • Takase, J., Yoshimoto, Y.: The metabolic behaviour of fenthion and fensulfothion in flooded soil. Bayer Report No. 1037 (1975)

  • Teuber, M.: Release of the periplasmic penicillinases from Escherichia coli by toluene. Arch. Mikrobiol. 73, 61–64 (1970)

    Google Scholar 

  • Waggoner, T. B., Khasawinah, A. M.: New aspects of organophosphorus pesticides. In: Residue reviews, Vol. 53 (F. A. Gunther, ed.), pp. 79–97. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhardt, G., Rast, H. & Wallnöfer, P. Bacterial metabolism of substituted phenols. Arch. Microbiol. 114, 25–33 (1977). https://doi.org/10.1007/BF00429626

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429626

Key words

Navigation