Skip to main content
Log in

Temperature dependence of membrane-bound enzymes of the energy metabolism in Rhodospirillum rubrum and Rhodopseudomonas sphaeroides

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Rhodospirillum rubrum grown either chemotrophically or phototrophically at 14°C and 30°C, was employed to study the effect of temperature on fatty acid composition as well as on several membrane bound functions involved in energy metabolism. Upon growth at both temperatures the fatty acid composition of membranes showed differences, which could be attributed to an incomplete formation of photosynthetically active membranes rather than specifically to the growth temperature. Activities of NADH dependent respiration and light induced proton extrusion by cells did not show discontinuities in Arrhenius plots down to temperatures of 15°C and 5°C, respectively. In contrast, coupling factor Mg2+- and Ca2+-ATPase as well as succinate cytochrome c oxidoreductase showed significant breaks at 20°C and 18°C, respectively. Similarly, in Rhodopseudomonas sphaeroides. NADH dependent respiration and light induced proton extrusion by cells was continuous over the entire range of temperatures applied. ATPase as well as succinate cytochrome c oxidoreductase, on the other hand, featured discontinuities in Arrhenius plots at 20°C and 19°C. The implication of the data on growth rates and membrane structure are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bchl:

baceteriochlorophyll

References

  • Ayala, J., Nieto, M., Carreira, J., Muñóz, E.: Activation parameters of the adenosine triphosphatase of Micrococcus lysodeikticus. Eur. J. Biochem. 66, 43–47 (1976)

    Google Scholar 

  • Cronan, J. E., Vagelos, P. R.: Metabolism and function of the membrane phospholipids of Escherichia coli. Biochim. Biophys. Acta (Amst) 265, 25–60 (1972)

    Google Scholar 

  • Cullen, J., Phillips, M. C., Shipley, G. G.: The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens. Biochem. J. 125, 733–742 (1971)

    Google Scholar 

  • Drews, G.: Die Isolierung schwefelfreier Purpurbakterien. Zbl. Bakt., I. Abt. Orig., Suppl 1, 170–178 (1965)

    Google Scholar 

  • Edwards, G. E., Bovell, C. R.: Action of phenazine methyl sulfate, inhibitors, and uncouplers on the light-induced proton transport by cells of Rhodospirillum rubrum. J. Membrane Biol. 2, 95–107 (1970)

    Google Scholar 

  • Farrel, J., Rose, A. H.: Temperature on microorganisms. Ann. Revs. Microbiol. 21, 101–120 (1967)

    Google Scholar 

  • Fraley, R. T., Jameson, D. M., Kaplan, S.: The use of the fluorescent probe α-parinaric acid to determine the physical state of the intracytoplasmic membranes of the photosynthetic bacterium, Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta (Amst.) 511, 52–69 (1978)

    Google Scholar 

  • Gill, C. O., Suisted, J. R.: The effects of temperature and growth rate on the proportion of unsaturated fatty acids in bacterial lipids. J. Gen. Microbiol. 104, 31–36 (1978)

    Google Scholar 

  • Kaiser, I., Oelze, J.: Growth and adaptation to phototrophic conditions of Rhodospirillum rubrum and Rhodopseudomonas sphaeroides at different temperatures. Arch. Microbiol. 126, 187–195 (1980)

    Google Scholar 

  • Kenyon, C. N.: Complex lipids and fatty acids of photosynthetic bacteria. In: The photosynthetic bacteria (R. K. Clayton, W. R. Sistrom, eds.), pp. 281–313. New York, London: Plenum Publishing Corp. 1978

    Google Scholar 

  • Kruyff de, B., Dijck van, P. W. M., Goldbach, R. W., Demel R. A., Deenen van, L. L. M.: Influence of fatty acid and sterol composition on the lipid phase transition and activity of membrane-bound enzymes in Acholeplasma laidlawii. Biochim. Biophys. Acta (Amst.) 330, 269–282 (1973)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N., Farr, A. L., Randall, R. J.: Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193 269–275 (1951)

    Google Scholar 

  • Lücke, F. -K., Klemme, J. H.: Coupling factor adenosine-5′-triphosphatase from Rhodospirillum rubrum. A simple and rapid procedure for its purification. Z. Naturforsch. 31c, 272–279 (1976)

    Google Scholar 

  • Mabrey, S., Powis, G., Schenkman, B., Tritton, T. R.: Calorimetric study of microsomal membrane. J. Biol. Chem. 252, 2829–2933 (1977)

    Google Scholar 

  • Madden, T. D., Quinn, P. J.: Arrhenius discontinuities of Ca2+-ATPase activity are unrelated to changes in membrane lipid fluidity of sarcoplasmic reticulum. FEBS Letters 107, 110–112 (1979)

    Google Scholar 

  • McElhaney, R. N.: The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures. J. Mol. Biol. 84, 145–157 (1974)

    Google Scholar 

  • Melchior, D. L., Steim, J. M.: Thermotropic transitions in biomembrane. Ann. Rev. Biophys. Bioenerg. 5, 205–238 (1976)

    Google Scholar 

  • Oelze, J., Kamen, M. D.: Separation of respiratory reactions in Rhodospirillum rubrum: Inhibition studies with 2-hydroxydiphenyl. Biochim. Biophys. Acta (Amst.) 387, 1–11 (1975)

    Google Scholar 

  • Oelze, J., Golecki, J. R., Kleinig, H., Weckesser, J.: Characterization of two envelope fractions from chemotropically grown Rhodospirillum rubrum. Antonie van Leeuwenhoek, J. Microbiol. Serol., 41, 273–286 (1975)

    Google Scholar 

  • Oelze, J., Post, E.: The dependency of proton extrusion in the light on the development stage of the photosynthetic apparatus in Rhodospirillum rubrum. Biochim. Biophys. Acta (Amst.) (in press)

  • Overath, P., Schairer, H. U., Stoffel, W.: Correlation of in vivo and vitro phase transactions of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 67, 606–612 (1970)

    Google Scholar 

  • Raison, J. K.: The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systems. Bioenergetics 4, 285–309 (1973)

    Google Scholar 

  • Sackmann, E., Albrecht, O., Hartmann, W., Galla, H. L.: Domain formation in lipid bilayers and biological membranes. In: C. Nicolau and A. Paraf, eds.), pp, 28–43. Berlin, Heidelberg, New York:Springer 1977

    Google Scholar 

  • Sandermann, H.: Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta (Amst.) 515, 209–237 (1978)

    Google Scholar 

  • Senez, J. C.: Somer considerations on the energetics of bacterial growth. Bacteriol. Revs. 26 95–107 (19762)

    Google Scholar 

  • Silvius, J. R., Read, B. D., McElhaney, R. N.: Membrane enzyme: Artifacts in Arrhenius plots due to temperature dependence of substrate-binding affinity. Science 199, 902–904 (1978)

    Google Scholar 

  • Wood, B. J. B., Nichols, B. W., James, A. T.: The lipids and fatty acid metabolism of photosynthetic bacteria. Biochim. Biophys. Acta (Amst.) 106, 261 (1965)

    Google Scholar 

  • Wraight, C. A., Cogdell, R. J., Chance, B.: Ion transport and electrochemical gradients in photosynthetic bacteria (R. K. Clayton, W. R. Sistrom, eds.), pp. 471–511. New York:Plenum Publishing Corp. 1978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, I., Oelze, J. Temperature dependence of membrane-bound enzymes of the energy metabolism in Rhodospirillum rubrum and Rhodopseudomonas sphaeroides . Arch. Microbiol. 126, 195–200 (1980). https://doi.org/10.1007/BF00511227

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00511227

Key words

Navigation