Skip to main content
Log in

Occurrence of corrinoid-containing membrane proteins in anaerobic bacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Methanobacterium thermoautotrophicum a corrinoid-carrying membrane protein complex has been found, to which a tentative role in methane formation has been ascribed. To test this hypothesis representatives from different orders of methanogenic bacteria were examined for membrane-bound cobamides. These species differed in cell carbon precursor, in methane precursor, in occurrence of cytochromes and of the enzyme CO dehydrogenase, and in the systematic position (Methanobacteriales, Methanomicrobiales). All methanogenic bacteria contained cobamides in the membranes in amounts of about 60 nmol/g cell dry weight, in addition to different amounts of cobamides in the soluble cell fraction. The only central metabolic reaction obviously common to all of these methanogens was methyl coenzyme M reduction to CH4. It is concluded that the membrane corrinoid participates in this energy-conserving reaction.

Sulfate-reducing and acetogenic bacteria were included in this survey. They contained different amounts of cobamides in the soluble cell fraction but not in the membrane, a possible exception being Acetobacterium woodii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ankel-Fuchs D, Thauer RK (1986) Methane formation from methyl coenzyme M in a system containing methyl-CoM reductase, component B, and reduced cobalamin. Eur J Biochem 156:171–177

    Google Scholar 

  • Ankel-Fuchs D, Hüster R, Mörschel E, Albracht SPJ, Thauer RK (1986) Structure and function of methylcoenzyme M reductase and of factor F 430 in methanogenic bacteria. System Appl Microbiol 7:383–387

    Google Scholar 

  • Bak F, Widdel F (1986) Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. Arch Microbiol 146:170–176

    Google Scholar 

  • Balch WE, Magrum LJ, Fox GE, Wolfe RS, Woese CR (1979) Methanogens: A reevaluation of a unique bacterial group. Microbiol Rev 43:260–296

    Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassl M (1974) Glycerinaldehyd-3-phosphat-dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 1. Verlag Chemie, Weinheim, pp 495–496

    Google Scholar 

  • Blaut M, Gottschalk G (1985) Evidence for a chemiosmotic mechanism of ATP synthesis in methanogenic bacteria. Trends Biochem Sci 10:486–489

    Google Scholar 

  • Bott MH, Eikmanns B, Thauer RK (1985) Defective formation and/or utilization of carbon monoxide in H2/CO2 fermenting methanogens dependent on acetate as carbon source. Arch Microbiol 143:266–269

    Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. I. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 136:222–229

    Google Scholar 

  • Daniels L, Luchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    Google Scholar 

  • Diekert G, Weber B, Thauer RK (1980) Nickel dependence of factor F430 content in Methanobacterium thermoautotrophicum. Arch Microbiol 127:273–278

    Google Scholar 

  • Diekert G, Fuchs G, Thauer RK (1985) Properties and function of carbon monoxide dehydrogenase from anaerobic bacteria. In: Poole RK, Dow CS (eds) Microbial gas metabolism. Mechanistic, metabolic and biotechnical aspects. Academic Press, London, pp 115–130

    Google Scholar 

  • Dolphin D (1982) B12, vol 1+2. Wiley, New York

    Google Scholar 

  • Eden G, Fuchs G (1983) Autotrophic CO2 fixation in Acetobacterium woodii. II. Demonstration of enzymes involved. Arch Microbiol 135:68–73

    Google Scholar 

  • Ellefson WE, Wolfe RS (1981) Component C of the methylreductase system of Methanobacterium. J Biol Chem 256:4259–4262

    Google Scholar 

  • Ellefson WL, Whitman WB, Wolfe RS (1982) Nickel-containing factor F 430: chromophore of the methylreductase of Methanobacterium. Proc Natl Acad Sci USA 79:3707–3710

    Google Scholar 

  • Eikmanns B, Thauer RK (1985) Evidence for the involvement and role of corrinoid enzyme in methane formation from acetate in Methanosarcina barkeri. Arch Microbiol 142:175–179

    Google Scholar 

  • Ferry JG, Wolfe RS (1977) Nutritional and biochemical characterization of Methanospirillum hungatii. Appl Environ Microbiol 34:371–376

    Google Scholar 

  • Friedrich W (1975) Vitamin B12 und verwandte Corrinoide. In: Ammon R, Dirscherl W (eds) Fermente, Hormone, Vitamine, vol 3/2. Thieme, Stuttgart

    Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39:181–213

    Google Scholar 

  • Fuchs G, Stupperich E (1986) Carbon assimilation pathways in Archaebacteria. System Appl Microbiol 7:364–369

    Google Scholar 

  • Goa J (1953) A microbiuret method for protein determination of total protein in cerebrospinal fluid. Scand J Clin Invest 5:218–222

    Google Scholar 

  • Gottschalk G (1985) Bacterial metabolism, 2nd edn. Springer, Berlin Heidelberg New York, pp 250–253

    Google Scholar 

  • Holder U, Schmidt DE, Stupperich E, Fuchs G (1985) Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. III. Evidence for common one-carbon precursor pool and the role of corrinoid. Arch Microbiol 141:229–238

    Google Scholar 

  • Jussofie A, Gottschalk G (1986) Further studies on the distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 37:15–18

    Google Scholar 

  • Kengen SWM, Poirot CM, Keltjens JT, Vogels GD (1986) Involvement of a corrinoid enzyme in methyl group transfer from methyl-THMP to coenzyme M. In: Duine JA, Verseveld HW van (eds) Abstracts of the 5th International Symposium on Microbial Growth on C1 Compeounds. Free University Press, Amsterdam, p 25

    Google Scholar 

  • Krzycki J, Zeikus JG (1980) Quantification of corrinoids in methanogenic bacteria. Curr Microbiol 3:243–245

    Google Scholar 

  • Kühn W, Fiebig K, Hippe H, Mah RA, Huser BA, Gottschalk G (1983) Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 20:407–410

    Google Scholar 

  • Länge S, Fuchs G (1987) Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide. Eur J Biochem 163:147–154

    Google Scholar 

  • Lezius AG, Barker HA (1965) Corrinoid compounds of Methanobacillus omelianski. I. Fractionation of the corrinoid compounds and identification of factor III and factor III coenzyme. Biochem 4:510–518

    Google Scholar 

  • Ljungdahl L, Irion E, Wood HG (1966) Role of corrinoids in the total synthesis of acetate from CO2 by Clostridium thermoaceticum. Fed Proc Am Sec Exp Biol 25:1642–1648

    Google Scholar 

  • Lorowitz WH, Bryant MP (1984) Petostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47:961–964

    Google Scholar 

  • Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122

    Google Scholar 

  • Ossmer R, Mund T, Hartzell PL, Konheiser U, Kohring GW, Klein A, Wolfe RS, Gottschalk G, Mayer F (1986) Immunocytochemical localization of component C of the methylreductase system in Methanococcus voltae and Methanobacterium thermoautotrophicum. Proc Natl Acad Sci USA 83:5789–5792

    Google Scholar 

  • Pfaltz A, Jaun B, Fässler A, Eschenmoser A, Jaenchen R, Gilles HH, Diekert G, Thauer RK (1982) Zur Kenntnis des Faktors F430 aus methanogenen Bakterien: Struktur des porphinoiden Ligandsystems. Helvetica Chimica Acta 65:828–865

    Google Scholar 

  • Savéant JM, DeTacconi N, Lexa D, Zickler J (1979) Electrochemistry of vitamin B12 equilibria genetics and mechanisms in the B 12a-B 12r-B 12s oxido-reduction. In: Friedrich W (ed) Vitamin B12. De Gruyter, Berlin, pp 203–212

    Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145:162–172

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s, K s, µmax, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Schulz H, Fuchs G (1986) Cobamide-containing membrane protein complex in Methanobacterium thermoautotrophicum. FEBS Lett 198:279–283

    Google Scholar 

  • Stupperich E, Kräutler B (1987) Pseudo vitamin B12 and 5-hydroxybenzimidazolyl-cobamide are the predominant corrinoids of methanogenic bacteria. FEBS Lett (in press)

  • Stupperich E, Steiner I, Rühlemann M (1986) Isolation and analysis of bacterial cobamides by HPLC. Anal Biochem 155:365–370

    Google Scholar 

  • Stupperich E, Steiner I, Eisinger H-J (1987) Substitution of Co α-(5-hydroxybenzimidazolyl)cobamide (Factor III) by vitamin B12 in Methanobacterium thermoautotrophicum. J Bacteriol (in press)

  • Van der Meijden P, Tebrömmelstroet BW, Poirot CM, van der Drift C, Vogels GD (1984) Purification and properties of methanol-5-hydroxybenzimidazolylcobamide methyltransferase from Methanosarcina barkeri. J Bacteriol 160:629–635

    Google Scholar 

  • Van der Meijden P, van der Drift C, Vogels GD (1985) Methanol conversion in methanogenic and acetogenic bacteria. J Microbiol Serol 51:454

    Google Scholar 

  • Van de Wijngaard WMH, van der Drift C, Vogels GD (1986) Methane formation from methanol by Methanosphaera stadtmaniae. In: Duine JA, Verseveld HW van (eds) Abstracts of the 5th International Symposium on Microbial Growth on C1 Compounds. Free University Press, Amsterdam, p 24

    Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Arch Microbiol 129:395–400

    Google Scholar 

  • Wolfe RS (1985) Unusual coenzymes of methanogenesis. Trends Biochem Sci 10:396–399

    Google Scholar 

  • Wood HG, Ragsdale SW, Pezacka E (1986) The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol Rev 39:345–362

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dangel, W., Schulz, H., Diekert, G. et al. Occurrence of corrinoid-containing membrane proteins in anaerobic bacteria. Arch. Microbiol. 148, 52–56 (1987). https://doi.org/10.1007/BF00429647

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429647

Key words

Navigation