Skip to main content
Log in

Search for polythionates in cultures of Chromatium vinosum after sulfide incubation

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cultures of Chromatium vinosum, devoid of sulfur globules, were supplemented with sulfide and incubated under anoxic conditions in the light. The concentrations of sulfide, polysulfides, thiosulfate, polythionates and elemental sulfur (sulfur rings) were monitored for 3 days by ion-chromatography and reversed-phase HPLC. While sulfide disappeared rapidly, thiosulfate and elemental sulfur (S6, S7 S8 rings) were formed. After sulfide depletion, the concentration of thiosulfate decreased fairly rapidly, but elemental sulfur was oxidized very slowly to sulfate. Neither polysulfides (S 2−x ), polythionates (SnO 2−6 , n=4–6), nor other polysulfur compounds could be detected, which is in accordance with the fact that sulfide-grown cells were able to oxidize polysulfide without lag. The nature of the intracellular sulfur globules is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Feher F, Laue W (1956) Beiträge zur Chemie des Schwefels. XXIX. Über die Darstellung von Rohsulfanen. Z Anorg Allg Chem 288:103–112

    Google Scholar 

  • Fischer U (1984) Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic sulfur bacteria. Sulfur, its significance for chemistry, for the geo-, bio-, and the cosmosphere and technology. In: Müller A, Krebs B (eds) Studies in inorganic chemistry, vol 5. Elsevier, Amsterdam, pp 383–407

    Google Scholar 

  • Gerischer H (1949) Über die Auflösungsgeschwindigkeit von Schwefel in Sulfid- und Polysulfidlösungen. Z Anorg Chem 259:220–224

    Google Scholar 

  • Guerrero R, Mas J, Pedrós-Alió C (1984) Buoyant density changes due to intracellular content of sulfur in Chromatium warmingii and Chromatium vinosum. Arch Microbiol 137:350–356

    Google Scholar 

  • Guerrero R, Pedrós-Alió C, Schmidt TM, Mas J (1985) A survey of buoyant density of microorganisms in pure cultures and natural samples. Microbiologia (Spain) 1:53–65

    Google Scholar 

  • Hansen CJ (1933) Die Einwirkung von Schwefelwasserstoff und Sulfiden auf Polythionate. Ber Dtsch Chem Ges 66:817–825

    Google Scholar 

  • Hageage GJ Jr, Eanes ED, Gherna RL (1970) X-ray diffraction studies of the sulfur globules accumulated by Chromatium species. J Bacteriol 101:464–469

    Google Scholar 

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 5B. Academic Press, New York, pp 209–344

    Google Scholar 

  • Kurtenacker A, Goldbach E (1927) Über die Analyse von Polythionatlösungen. Z Anorg Allg Chem 166:177–189

    Google Scholar 

  • Kurtenacker A, Kaufmann M (1925) Über die Einwirkung von Schwefelwasserstoff auf die Polythionate. Z Anorg Allg Chem 148:256–264

    Google Scholar 

  • Licht S, Hodes G, Manassen J (1986) Numerical analysis of aqueous polysulfide solutions and its application to cadmium chalcogenide/polysulfide photoelectrochemical solar cells Inorg Chem 25:2486–2489

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Radall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Mas J, Pedrós-Alió C, Guerrerro R (1985) Mathematical model for determining the effects of intracytoplasmatic inclusions on volume and density of microorganisms. J Bacteriol 164:749–756

    Google Scholar 

  • Mas J, Van Gemerden H (1987) Influence of sulfur accumulation and composition of sulfur globule on cell volume and buoyant density of Chromatium vinosum. Arch Microbiol 146:362–369

    Google Scholar 

  • Nicolson GL, Schmidt GL (1971) Structure of the Chromatium sulfur particle and its protein membrane. J Bacteriol 105:1142–1148

    Google Scholar 

  • Rosental S (1930) Die Dielektrizitätskonstante unterkühlten Schwefels und einiger Schwefellösungen. Z Phys 66:652–656

    Google Scholar 

  • Schedel M (1978) Untersuchungen zur anaeroben Oxidation reduzierter Schwefelverbindungen durch Thiobacillus denitrificans, Chromatium vinosum und Chlorobium limicola. Ph D Thesis, University of Bonn, FRG

  • Schmidt GL, Nicolson GL, Kamen MD (1971) Composition of the sulfur particle of Chromatium strain D. J Bacteriol 105:1137–1141

    Google Scholar 

  • Schwarzenbach G, Fischer A (1960) Die Acidität der Sulfane und die Zusammensetzung wässriger Polysulfidlösungen. Helv Chim Acta 43:1365–1390

    Google Scholar 

  • Smith AJ (1966) The role of tetrathionate in the oxidation of thiosulphate by Chromatium sp. strain D. J Gen Microbiol 42:371–380

    Google Scholar 

  • Steudel R (1984) Neue Entwicklungen in der Chemie des Schwefels und des Selens. Nova Acta Leopoldina NF 264:59–231

    Google Scholar 

  • Steudel R (1989) On the nature of the “elemental sulfur” (So) produced by sulfur-oxidizing bacteria — a model for So globules. In: Schlegel HG, Bowien B (eds) Biology of autotrophic bacteria. Science Tech Publ, Madison, and Springer, Berlin Heidelberg New York, pp 289–303

    Google Scholar 

  • Steudel R, Holdt G (1986) Ion-pair chromatographic separation of polythionates SnO 2−6 with up to thirteen sulphur atoms. J Chromatogr 361:379–384

    Google Scholar 

  • Steudel R, Göbel T, Holdt G (1988) The molecular composition of hydrophilic sulfur sols prepared by acid decomposition of thiosulfate. Z Naturforsch B 43:203–218

    Google Scholar 

  • Steudel R, Holdt G, Göbel T (1989) Ion-pair chromatographic separation of inorganic sulfur anions including polysulfide. J Chromatogr 475:442–446

    Google Scholar 

  • Steudel R, Holdt G, Göbel T, Hazeu W (1987) Chromatographic separation of higher polythionates SnO 2−6 (n=3...22) and their detection in cultures of Thiobacillus ferrooxidans: Molecular composition of bacterial sulfur secretions. Angew Chem Int Ed Engl 26:151–153

    Google Scholar 

  • Strauss R, Steudel R (1987) Schnelle chromatographische Trennung und Bestimmung der Schwefel-Homocyclen Sn (n=6–28) mittels HPLC. Fresenius'Z Anal Chem 326:543–546

    Google Scholar 

  • Tebbe FN, Wasserman E, Peet WG, Vatvars A, Hayman AC (1982) Composition of elemental sulfur in solution: Equilibrium of S6, S7 and S8 at ambient temperatures. J Am Chem Soc 104:4971–4872

    Google Scholar 

  • Then J (1984) Beiträge zur Sulfidoxidation durch Ectothiorhodospira abdelmalekii und Ectothiorhodospira halochloris. Ph D Thesis, University of Bonn, FRG

  • Trüper HG (1984) Phototrophic bacteria and their sulfur metabolism. Sulfur, its significance for chemistry, for the geo-, bio-, and the cosmosphere and technology. In: Müller A, Krebs B (eds) Studies in inorganic chemistry, vol 5. Elsevier, Amsterdam, pp 367–382

    Google Scholar 

  • Trüper HG (1989) Physiology and biochemistry of phototrophic bacteria. In: Schlegel HG, Bowien B (eds) Biology of autotrophic bacteria. Science Tech Publ, Madison and Springer, Berlin Heidelberg New York, pp 267–281

    Google Scholar 

  • Trüper HG, Fischer U (1982) Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Phil Trans R Soc Lond B 298:529–542

    Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. J Microbiol Serol 30:225–238

    Google Scholar 

  • Van Gemerden H (1968) Growth measurements in Chromatium cultures. Arch Mikrobiol 64:103–110

    Google Scholar 

  • Van Gemerden H (1984) Coexistence of organisms competing for the same substrate: an example among the purple sulfur bacteria. Micr Ecol 1:104–119

    Google Scholar 

  • Van Gemerden H (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 139:289–294

    Google Scholar 

  • Van Gemerden H (1987) Competition between purple sulfur bacteria and green sulfur bacteria: role of sulfide, sulfur and polysulfides. Acta Acad Aboensis 47:13–27

    Google Scholar 

  • Van Gemerden H, Beeftink HH (1978) Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch Microbiol 119:135–143

    Google Scholar 

  • Van Gemerden H, Tughan CS, De Wit R, Herbert RA (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62: 87–102

    Google Scholar 

  • Van Niel CB (1936) On the metabolism of Thiorhodaceae. Arch Mikrobiol 7: 323–358

    Google Scholar 

  • Visscher PT, Van Gemerden H (1988) Growth of Chlorobium limicola f. thiofulfatophilum on polysulfides. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 287–294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steudel, R., Holdt, G., Visscher, P.T. et al. Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch. Microbiol. 153, 432–437 (1990). https://doi.org/10.1007/BF00248423

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248423

Key words

Navigation