Skip to main content
Log in

Purification of a periplasmic insulin-cleaving proteinase from Acinetobacter calcoaceticus

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cells of Acinetobacter calcoaceticus contain a constitutive periplasmic metalloproteinase showing similar properties as the periplasmic metalloproteinase of Escherichia coli. The periplasmic proteinase of A. calcoaceticus was purified, starting from periplasm, by ammonium sulfate precipitation, hydrophobic interaction chromatography and chromatofocusing up to the homogeneity of the enzyme in SDS-electrophoresis with a yield of 6.7% and a purification factor of 417. The enzyme has a molecular mass of 108000 (gel filtration) or 112000 (native electrophoresis), and consists of four identical subunits with a molecular mass of 27 000 (SDS-electrophoresis).

The purified enzyme degrades preferentially polypeptides such as glucagon and insulin. Larger proteins are accepted as substrates to a considerably lower extent. All tested synthetic substrates with trypsin, chymotrypsin, elastase and thermolysin specificity were not cleaved. Therefore, the described enzyme was designated “insulin-cleaving proteinase” (ICP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews JC, Blevin TC, Short SA (1986) Regulation of peptide transport in Escherichia coli: induction of trp-linked operon encoding the oligopeptide permease. J Bacteriol 165: 428–433

    CAS  PubMed  Google Scholar 

  • Barrett AJ, Rawlings ND (1991) Proteinases. Types and families of endopeptidases. Biochem Soc Trans 19: 707–715

    CAS  PubMed  Google Scholar 

  • Cavard D, Lazdunski C (1990) Colicin cleavage by ompT protease during both entry into and release from Escherichia coli cells. J Bacteriol 172: 648–652

    CAS  PubMed  Google Scholar 

  • Cheng YS, Zipser D (1979) Purification and characterization of protease III from Escherichia coli. J Biol Chem 254: 4698–4706

    CAS  PubMed  Google Scholar 

  • Chung CH, Goldberg AL (1983) Purification and characterization of protease S0, a cytoplasmic serine protease in Escherichia coli. J Bacteriol 154: 231–238

    CAS  PubMed  Google Scholar 

  • Feder J, Schuck JM (1968) Studies on the Bacillus subtilis neutralprotease-and Bacillus thermoproteolyticus thermolysin-catalyzed hydrolysis of dipeptide substrates. Biochemistry 9: 2784–2791

    Google Scholar 

  • Folk JE, Gladner JA (1958) Carboxypeptidase B. J Biol Chem 231: 379–391

    CAS  PubMed  Google Scholar 

  • Folk JE, Schirmer EW (1963) The porcine pacreatic carboxypeptidase A system. J Biol Chem 238: 3884–3895

    CAS  PubMed  Google Scholar 

  • Fricke B, Bergmann R, Sorger H, Aurich H (1982) Optimierung von Kulturbedingungen für Acinetobacter clacoaceticus beim Wachstum auf n-Alkanen in einem Laborfermentor. Z Allg Mikrobiol 22: 365–372

    CAS  PubMed  Google Scholar 

  • Fricke B, Jahreis G, Sorger H, Aurich H (1986) Zellhüllgebundene Proteinase-Aktivitäten in Acinetobacter calcoaceticus. Biomed Biochim Acta 45: 257–264

    CAS  PubMed  Google Scholar 

  • Fricke B, Jahreis G, Sorger H, Aurich H (1987) Proteasen in differenten Membranfraktionen von Acinetobacter calcoaceticus. J Basic Microbiol 27: 75–81

    CAS  PubMed  Google Scholar 

  • Fricke B, Aurich H (1989) Characterization of a periplasmic insulin-cleaving metalloproteinase from Acinetobacter calcoaceticus. Biomed Biochim Acta 48: 661–671

    CAS  PubMed  Google Scholar 

  • Glässer D, Kleine R (1962) Beitrag zur Eiweißbestimmung in stark verdünnten Lösungen. Pharmazie 17: 32–36

    Google Scholar 

  • Goldberg AL (1981) Proteases in E. coli. Methods Enzymol 80: 680–702

    CAS  PubMed  Google Scholar 

  • Grodberg J, Dunn JJ (1989) ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170: 1245–1253

    Google Scholar 

  • Hancock REW (1987) Role of porins in outer membrane permeability. J Bacteriol 169: 929–933

    CAS  PubMed  Google Scholar 

  • Hendrick J, Smith AL (1968) Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys 126: 155–164

    Google Scholar 

  • Higgins F, Hardie MM (1983) Periplasmic protein associated with the oligopeptide permeases of Salmonella typhimurium and Escherichia coli. J Bacteriol 155: 1434–1438

    CAS  PubMed  Google Scholar 

  • Kleber HP, Schöpp W, Aurich H (1973) Verwertung von n-Alkanen durch einen Stamm von Acinetobacter calcoaceticus. Z Allg Mikrobiol 13: 445–447

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T 4. Nature 227: 680–686

    Article  CAS  PubMed  Google Scholar 

  • Langner J, Wakil A, Zimmermann M, Ansorge S, Bohley P, Kirschke H, Wiederanders B (1973) Aktivitätsbestimmung proteolytischer Enzyme mit Azokasein als Substrat. Acta Biol Med Germ 31: 1–18

    CAS  PubMed  Google Scholar 

  • Lazdunski C, Bussutil J, Lazdunski A (1975a) Purification and properties of a periplasmic aminoendopeptidase from E. coli. Europ J Biochem 60: 363–369

    CAS  PubMed  Google Scholar 

  • Lazdunski A, Murgier M, Lazdunski C (1975b) Evidence for an aminopeptidase localized near the cell surface of E. coli. Europ J Biochem 60: 3449–3555

    Google Scholar 

  • Lin Y, Means GE, Feeney RE (1969) The action of proteolytic enzymes on N,N-dimethyl-proteins. J Biol Chem 244: 789–793

    CAS  PubMed  Google Scholar 

  • Ludewig M, Fricke B, Aurich H (1988) Leucine aminopeptidase in intracytoplasmic membranes of Acinetobacter calcoaceticus. J Basic Microbiol 28: 99–105

    Google Scholar 

  • Lugtenberg B, VanAlphen L (1983) Molecular architecture and functioning of the outer membrane of Escherichia coli and other Gram-negative bacteria. Biochim Biophys Acta 737: 51–116

    CAS  PubMed  Google Scholar 

  • McGregor H, Bishop CW, Blech JE (1979) Localization of proteolytic activity in the outer membrane of Escherichia coli. J Bacteriol 137: 574–583

    Google Scholar 

  • Miller CG (1987) Protein degradation and proteolytic modification. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. American Society for Microbiology, Washington DC, pp 680–691

    Google Scholar 

  • Nossal NG, Heppel LA (1966) The release of enzymes by osmotic shock from E. coli in exponential phase. J Biol Chem 241: 3055–3062

    CAS  PubMed  Google Scholar 

  • Riordan JJ, Valle BL (1972) Acetylation. Methods Enzymol 25: 494–499

    CAS  Google Scholar 

  • Schwert GW, Takenaka Y (1955) A spectrophotometric determination of trypsin and chymotrypsin. Biochim Biophys Acta 16: 570–579

    Article  CAS  PubMed  Google Scholar 

  • Sluyterman LAA, Wijdenes JJ (1978) Chromatofocusing: isoelectric focusing on ion exchange columns. II. Experimental verifications. J Chromatogr 150: 31–44

    CAS  Google Scholar 

  • Sorger H, Aurich H (1973) Über das Malatenzym im Schweinechirn. Acta Biol Med Germ 30: 303–305

    CAS  PubMed  Google Scholar 

  • Sugimura K, Nishihara T (1988) Purification, characterization and primary structure of E. coli protease VII with specificity for paired basic residues: Identity of protease VII and OmpT. J Bacteriol 170: 5625–5632

    CAS  PubMed  Google Scholar 

  • Swamy KH, Goldberg AL (1981) E. coli contains eight soluble proteolytic activities, one being ATP dependent. Nature 292: 652–656

    Article  CAS  PubMed  Google Scholar 

  • Swamy KH, Goldberg AL (1982) Subcellular distribution of various proteases in Escherichia coli. J Bacteriol 149: 1027–1033

    CAS  PubMed  Google Scholar 

  • Winterhalter KH, Huehns ER (1964) Preparation, properties, and specific recombination of α,β-globin subunits. J Biol Chem 239: 3699–3705

    CAS  PubMed  Google Scholar 

  • Zwizinski C, Wickner W (1980) Purification and characterization of leader (signal) peptidase from Escherichia coli. J Biol Chem 255: 7973–7977

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fricke, B., Aurich, H. Purification of a periplasmic insulin-cleaving proteinase from Acinetobacter calcoaceticus . Arch. Microbiol. 157, 451–456 (1992). https://doi.org/10.1007/BF00249104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249104

Key words

Navigation