Skip to main content
Log in

Terminal oxydation pattern of a soil Pseudomonad (PL-strain)

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

The organism grown on Δ1-p-menthene was found to grow without any lag on methyl isopropyl ketone, isobutyrate, succinate, malate, lactate and acetate. Isobutyrate or acetate grown cells grew on Δ1-p-menthene after a lag and showed comparatively little growth on β-isopropyl pimelic acid.

Δ1-p-menthene grown cells oxidized readily isobutyrate, acetate, succinate, malate, α-ketoglutarate and methacrylate. Methylmalonate, methyl isopropyl ketone and β-isopropyl pimelic acid were rather oxidized at slow rates. Isobutyrate grown cells, on the other hand, showed from very good to very fair oxidation rates with succinate, isobutyrate, acetate, malate, methacrylate, α-ketoglutarate. Methylmalonate was oxidized much better and methyl isopropyl ketone was oxidized slowly.

Δ1-p-menthene and isobutyrate grown cells were used under resting conditions with different substrates in the presence of arsenite. Analysis of the reaction products indicated the accumulation of a keto acid. Qualitative analysis of the keto acid formed by TLC showed pyruvate as the major ketocarboxylic acid with one or two other minor components. The major component had been isolated and identified as pyruvic acid. Similar results had been obtained by working with crude cell-free enzyme preparations.

Based on these results two possible mechanisms of degradation of isobutyrate have been suggested. A plausible pathway has been outlined for the terminal oxidation pattern in the Pseudomonad (PL-strain).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NAD:

Nicotinamide adenine dinucleotide

FAD:

Flavine adenine dinucleotide

α-KGA:

α-keto-glutaric acid

CFE:

cell-free extract

CoA:

coenzyme A in its reduced state

References

  • Ballal, N. R., Bhattacharyya, P. K., Rangachari, P. N.: Perillyl alcohol dehydrogenase from a soil Pseudomonad. Biochem. biophys. Res. Commun. 23, 473–478 (1966).

    Google Scholar 

  • ———: Perillyl aldehyde dehydrogenase from a soil Pseudomonad. Biochem. biophys. Res. Commun. 29, 275–280 (1967).

    Google Scholar 

  • ———: Microbiological transformations of terpenes: Part XIV. Purification and properties of perillyl alcohol dehydrogenase. Indian. J. Biochem. 5, 1–6 (1968).

    Google Scholar 

  • Dagley, S., Gibson, D. T.: The bacterial degradation of catechol. Biochem. J. 95, 466–474 (1965).

    Google Scholar 

  • Den, H., Robinson, W. G., Coon, M. J.: Enzymatic conversion of β-hydroxypropionate to malonic semialdehyde. J. biol. Chem. 234, 1666–1671 (1959).

    Google Scholar 

  • Dhavalikar, R. S., Bhattacharyya, P. K.: Microbiological transformations of terpenes. Part VIII. Fermentation of limonene by a soil Pseudomonad. Indian J. Biochem. 3, 144–157 (1966).

    Google Scholar 

  • —, Rangachari, P. N., Bhattacharyya, P. K.: Microbiological transformations of terpenes. Part IX. Pathways of degradation of limonene in a soil Pseudomonad. Indian J. Biochem. 3, 158–164 (1966).

    Google Scholar 

  • El Hawary, M. F. S., Thompson, R. H. S.: Separation and estimation of blood keto acids by paper chromatography. Biochem. J. 53, 340–347 (1953).

    Google Scholar 

  • Foster, J. W.: Hydrocarbons as substrates for microorganisms. Antonie v. Leeuwenhoek 28, 242–274 (1962).

    Google Scholar 

  • Friedemann, T. E., Haugen, G. E.: Pyruvic acid. II. Determination of α-keto acids in blood and urine. J. biol. Chem. 147, 415–442 (1943).

    Google Scholar 

  • Harris J. O.: Respiration studies of Micrococcus capable of oxidizing hydrocarbons. Arch. Biochem. 70, 457–463 (1957).

    Google Scholar 

  • Hungund, B. L.: Microbiological transformations of terpenes. Thesis, Poona University, Poona 1968.

    Google Scholar 

  • Hungund, B. L., Bhattacharyya, P. K., Rangachari, P. N.: Methyl isopropyl ketone from a terpene fermentation by the soil Pseudomonad, PL-strain. Indian J. Biochem. (in press) (1970).

  • Jagannathan, V., Singh, K., Damodaran, M.: Carbohydrate metabolism in citric acid fermentation. 4. Purification and properties of aldolase from Aspergillus niger. Biochem. J. 63, 94–105 (1956).

    Google Scholar 

  • Kupiecki F. P., Coon, M. J.: The enzymatic synthesis of β-aminoisobutyrate. A product of valine metabolism, and of β-alanine. A product of β-hydroxy propionate metabolism. J. biol. Chem. 229, 743–754 (1957).

    Google Scholar 

  • Madhyastha, K. M., Bhattacharyya, P. K.: Microbiological transformations of terpenes. Part XII. Fermentation of p-cymene by a soil pseudomonad (PL-strain). Indian J. Biochem. 5, 102–111 (1968a).

    Google Scholar 

  • ——: Microbiological transformations of terpenes. Part XIII. Pathways of degradation of p-cymene in a soil Pseudomonad (PL-strain). Indian J. Biochem. 5, 161–167 (1968b).

    Google Scholar 

  • —, Rangachari, P. N., Raghavendra Rao, M., Bhattacharyya, P. K.: Microbiological transformations of terpenes. Part XV. Enzymic systems in the catabolism of p-cymene in PL-strain. Indian J. Biochem. 5, 167–173 (1968).

    Google Scholar 

  • McKenna, E. J., Kallio, R. E.: The biology of hydrocarbons. Ann. Rev. Microbiol. 19, 183–208 (1965).

    Google Scholar 

  • Pujar, B. G.: Microbiological transformations of terpenes. Thesis, Poona University, Poona 1969.

    Google Scholar 

  • Rabin, R., Reeves, H. C., Wegener, W. S., Megraw, R. E., Ajl, S. J.: Glyoxalate in fatty acid metabolism. Science 150, 1548–1558 (1965).

    Google Scholar 

  • Reeves, H. C., Ajl, S. J.: α-hydroxyglutaric acid synthetase. J. Bact. 84, 186–187 (1962).

    Google Scholar 

  • Rendina, G., Coon, M. J.: Enzymatic hydrolysis of the coenzyme A thiol esters of β-hydroxypropionic and β-hydroxy isobutyric acids. J. biol. Chem. 225, 523–534 (1957).

    Google Scholar 

  • Robinson, W. G., Coon, M. J.: The purification and properties of β-hydroxy isobutyric dehydrogenase. J. biol. Chem. 225, 511–521 (1957).

    Google Scholar 

  • —, Nagle, R., Bachhawat, B. K., Kupiecki, F. P., Coon, M. J.: Coenzyme A thiol esters of isobutyric, methacrylic, and β-hydroxybutyric acids as intermediates in the enzymatic degradation of valine. J. biol. Chem. 224, 1–11 (1957).

    Google Scholar 

  • Seubert, W.: Degradation of isoprenoid compounds by microorganisms. I. Isolation and characterization of an isoprenoid degrading bacterium, Pseudomonas citronellolis n.sp. J. Bact. 79, 426–434 (1960).

    Google Scholar 

  • —, Fass, E.: Untersuchungen über den bakteriellen Abbau von Isoprenoiden. IV. Reinigung und Eigenschaften der β-isohexenyl-glutaconyl-CoA-hydratase und β-hydroxy-β-isohexenylglutaryl-CoA-lyase. Biochem. Z. 341, 23–34 (1964).

    Google Scholar 

  • ——: Untersuchungen über den bakteriellen Abbau von Isoprenoiden. V. Der Mechanismus des Isoprenoid-Abbaues. Biochem. Z. 341, 35–44 (1964).

    Google Scholar 

  • ——, Remberger, U.: Untersuchungen über den bakteriellen Abbau von Isoprenoiden. III. Reinigung und Eigenschaften der Geranylcarboxylase. Biochem. Z. 338, 265–275 (1963).

    Google Scholar 

  • —, Remberger, U.: Unterschungen über den bakteriellen Abbau von Isoprenoiden. II. Die Rolle der Kohlensäure. Biochem. Z. 338, 245–264 (1963).

    Google Scholar 

  • Shukla, O. P., Bhattacharyya, P. K.: Microbiological transformations of terpenes. XI. Pathways of degradation of α- and β-pinenes in a soil Pseudomonad (PL-strain). Indian J. Biochem. 5, 92–101 (1968).

    Google Scholar 

  • —, Moholay, M. N., (Miss), Bhattacharyya, P. K.: Microbiological transformations of terpenes. X. Fermentation of α- and β-pinenes by a soil Pseudomonad (PL-strain). Indian J. Biochem. 5, 79–91 (1968).

    Google Scholar 

  • Smith, J., Kornberg, H. L.: The utilization of propionate by Micrococcus denitrificans. J. gen. Microbiol. 47, 175–180 (1967).

    Google Scholar 

  • Thijsee, G. J. E., Van Der Linden, A. C.: Oxidation of n-alkanes by a strain of Pseudomonas aeruginosa. Antonie v. Leeuwenhoek 24, 298–308 (1958).

    Google Scholar 

  • ——: Isoalkane oxidation by a Pseudomonas Part 1. Metabolism of 2-methyl hexane Antonie v. Leeuwenhoek 27, 171–179 (1961).

    Google Scholar 

  • Umbreit, W. W., Burris, R. H., Stauffer, J. B.: Manometric techniques, 3rd Ed. Minneapolis: Burgess Publishing Co. 1957.

    Google Scholar 

  • Warburg, O., Christian, W.: Isolierung und Kristallisation des Gärungsferments, Enolase. Biochem. Z. 310, 384–421 (1942).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communication number 1426 from the National Chemical Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hungund, B.L., Bhattacharyya, P.K. & Rangachari, P.N. Terminal oxydation pattern of a soil Pseudomonad (PL-strain). Archiv. Mikrobiol. 71, 258–270 (1970). https://doi.org/10.1007/BF00410159

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00410159

Keywords

Navigation