Skip to main content
Log in

Studies on the incorporation of labelled sulphate into cells and cell-free extracts of Nitrosomonas europaea

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

The incorporation of [35S]sulphate was followed into the washed cell suspensions of Nitrosomonas europaea. Thus bound sulphate, sulphite, sulphide, cysteine, glutathione, homocysteine and methionine were found in the ethanol soluble fraction as well as in the residual hydrolysed protein fraction. Cysteic acid, methionine sulphoxide and methionine sulphone were detected in the residual protein. The reaction between sulphydryl groups and N-ethylmaleimide has been successfully used to stabilize the thiol compounds in cell-extracts and the derivatives thus obtained were separated by paper chromatography. As in other microorganisms, sulphate is first activated by ATP in Nitrosomonas before it is reduced. The formation of APS and PAPS has been studied. A pathway for the incorporation of [35S]sulphate is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

POPOP:

1,4-bis-(5-phenyloxazolyl-2)-benzene

PPO:

2,5-diphenyloxazole

APS:

adenosine-5′-phosphosulphate

PAPS:

adenosine-3′-phosphate 5′-phosphosulphate

ATP:

adenosine triphosphate

DNA-ase:

deoxyribonuclease

NEM:

N-ethylmaleimide

TCA:

trichloro-acetic acid

GSH:

glutathione

References

  • Aleem, M. I. H., Alexander, M.: Cell-free nitrification by Nitrobacter. J. Bact. 76, 510–514 (1958).

    PubMed  Google Scholar 

  • Baddileff, J., Buchanan, J. G., Letters, R.: Synthesis of adenosine-5′-sulphatophosphate. A degradation product of an intermediate in the enzymic synthesis of sulphuric esters. J. chem. Soc. (Lond.) Part I, 1067–1071 (1957).

  • Brunngraber, E. G.: Nucleotide involved in the enzymatic conjugation of phenols with sulphate. J. biol. Chem. 233, 472–477 (1958).

    PubMed  Google Scholar 

  • Dent, C. E.: A study of the behaviour of some sixty amino-acids and other ninhydrin-reacting substances on phenol-“chollidine” filter paper chromatograms, with notes as to the occurrence of some of them in biological fluids. Biochem. J. 43, 169–180 (1948).

    Google Scholar 

  • Eddy, A. A., Williamson, D. H.: A method of isolating protoplasts from yeast. Nature (Lond.) 179, 1252–1253 (1957).

    Google Scholar 

  • Ellis, R. J.: Sulphur metabolism: The usefulness of N-ethylmaleimide. Nature (Lond.) 211, 1266–1268 (1966).

    Google Scholar 

  • Farooqui, A. A., Balasubramanian, A. S.: Enzymatic dephosphorylation of 3′-phosphoadenosine 5′-phosphosulphate to adenosine 5′-phosphosulphate in sheep brain. Biochim. biophys. Acta (Amst.) 198, 56–65 (1970).

    Google Scholar 

  • Harris, G. K., Tigane, E., Hanes, G. S.: Quantitative chromatographic methods. 7. Isolation of amino acids from serum and other fluids. Canad. J. Biochem. Physiol. 39, 439–451 (1961).

    Google Scholar 

  • Hilz, H., Kittler, M., Knape, G.: Die Reduktion von Sulfat in der Hefe. Biochem. Z. 332, 151–156 (1959).

    PubMed  Google Scholar 

  • Horowitz, N. H.: Biochemical genetics of Neurospora. Biochemical genetics of Neurospora crassa. Advan. Genet. 3, 33–71 (1950).

    Google Scholar 

  • — In: A symposium on Amino Acid Metabolism. (Eds. W. D. McElroy and H. B. Glass) Discussion, pp. 631–632. Baltimore: John Hopkins Press 1955.

    Google Scholar 

  • Lampen, J. O., Roepke, R. R., Jones, M. J.: Studies on the sulphur metabolism of Escherichia coli. III. Mutant strains of Escherichia coli unable to utilize sulfate for their complete sulphur requirements. Arch. Biochem. 13, 55–66 (1947).

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    PubMed  Google Scholar 

  • Margolis, D., Mandl, R. N.: A system for separating sulfur and non-sulfur amino acid compounds by two dimensional paper chromatograms. Boyce Thomps. Inst. Contribut. 19, 509–512 (1958).

    Google Scholar 

  • Nicholas, D. J. D.: Biological sulphate reduction. Mineral. Deposita 2, 169–180 (1967).

    Article  Google Scholar 

  • —, Rao, P. S.: The incorporation of labelled CO2 into cells and extracts of Nitrosomonas europaea. Biochim. biophys. Acta (Amst.) 82, 394–397 (1964).

    Google Scholar 

  • Pardee, A. B., Prestige, L. S., Whipple, M. B., Dreyfuss, J.: A binding site for sulfate and its relation to sulfate transport into Salmonella typhimurium. J. biol. Chem. 241, 3962–3969 (1966).

    PubMed  Google Scholar 

  • Rees, M., Nason, A.: A P-450 like cytochrome and a soluble terminal oxidase identified as cytochrome o from Nitrosomonas europaea. Biochem. biophys. Res. Commun. 21, 248–259 (1965).

    PubMed  Google Scholar 

  • Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T., Britten, R. J.: Sulphur metabolism. In: Studies of Biosynthesis in Escherichia coli, pp. 318–405. Washington: Carnegie Inst. Publ. 607, 521 (1955).

  • Robbins, P. W., Lipmann, F.: Separation of the 2 enzymatic phases in active sulphate synthesis. J. biol. Chem. 233, 681–685 (1958).

    PubMed  Google Scholar 

  • Schlossmann, K., Lynen, F.: Biosynthesis of cysteine from serine and H2S. Biochem. Z. 328, 591–594 (1957).

    PubMed  Google Scholar 

  • Suzuki, S., Strominger, J. L.: Enzymatic sulfation of mucopolysaccharides in hen oviduct. I. Transfer of sulfate from 3′-phosphoadenosine 5′-phosphosulfate to mucopolysaccharides. J. biol. Chem. 235, 257–266 (1960).

    PubMed  Google Scholar 

  • Tate, M. E.: Separation of myoinositol pentaphosphates by moving paper electrophoresis (MPE). Analyt. Biochem. 23, 141–149 (1968).

    PubMed  Google Scholar 

  • Thiele, H. H.: Sulphur metabolism in Thiorhodaceae. V. Enzymes of sulphur metabolism in Thiocapsa floridana and Chromatium species. Antonie v. Leeuwenhoek 34, 350–356 (1968).

    Google Scholar 

  • Thompson, J. F.: Sulphur metabolism in plants. Ann. Rev. Plant Physiol. 18, 59–84 (1967).

    Article  Google Scholar 

  • Wainwright, W. W., Anderson, E. C., Hammer, P. C., Lehman, C. A.: Simplified autoradiography exposure calculation. Nucleonics 12, 19–21 (1954).

    Google Scholar 

  • Wilson, L. G.: Metabolism of sulfate: sulfate reduction. Ann. Rev. Plant Physiol, 13, 201–224 (1962).

    Article  Google Scholar 

  • —, Bandurski, R. S.: Enzymatic reactions involving sulphate, sulphite, selenate and molybdate. J. biol. Chem. 233, 975–981 (1958).

    PubMed  Google Scholar 

  • Wilson, L. G., Asahi, T., Bandurski, R.: Yeast sulphate reducing system. I. Reduction of sulphate to sulphite. J. biol. Chem. 236, 1822–1829 (1961).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, A.K., Nicholas, D.J.D. Studies on the incorporation of labelled sulphate into cells and cell-free extracts of Nitrosomonas europaea . Archiv. Mikrobiol. 73, 293–307 (1970). https://doi.org/10.1007/BF00412296

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00412296

Keywords

Navigation