Skip to main content
Log in

Control of urease formation in certain aerobic bacteria

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

During nitrogen starvation, a 20- to 250-fold increase in specific urease activity was observed in extracts of P. aeruginosa, P. fluorescens, Hydrogenomonas, M. denitrificans, M. cerificans and B. megaterium. In contrast to these species, high levels of urease were observed in P. vulgaris strains and in S. ureae under all growth conditions. No urease was detectable in strains of E. coli, S. marcescens and B. polymyxa, regardless of growth conditions.

Incubated in the absence of an exogenous nitrogen source, the specific urease activity increased during a period of 10 to 20 h in P. aeruginosa, Hydrogenomonas and M. denitrificans. Phosphate starvation did not significantly effect urease formation in these strains. The increase in specific urease activity was found to be repressed by exogenous nitrogen sources, including urea. Inhibition by chloramphenicol, other inhibitors, and by the lack of oxygen or fructose, indicated that a derepressive urease formation may occur in these strains. The involvement of traces of urea possibly released from endogenous sources during starvation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bongers, L.: Phosphorylation in hydrogen bacteria. J. Bact. 93, 1615–1623 (1967).

    PubMed  Google Scholar 

  • Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analyt. Biochem. 1, 279–285 (1960).

    Google Scholar 

  • Christensen, W. B.: Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J. Bact. 52, 461 (1946).

    Google Scholar 

  • Davies, J., Jones, D. S., Khorana, H. G.: A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J. molec. Biol. 18, 48–57 (1966).

    PubMed  Google Scholar 

  • Davis, R. H.: Sources of urea in Neurospora. Biochim. biophys. Acta (Amst.) 215, 412–414 (1970).

    Google Scholar 

  • DeTurk, W. E.: The adaptive formation of urease by washed suspensions of Pseudomonas aeruginosa. J. Bact. 70, 187–191 (1955).

    PubMed  Google Scholar 

  • Edwards, P. R., Ewing, W. H.: Identification of Enterobacteriaceae, 2nd ed. Minneapolis: Burgess Publishing Co. 1962.

    Google Scholar 

  • Filner, P., Wray, J. L., Varner, J. W.: Enzyme induction in higher plants. Science 165, 358–367 (1969).

    Google Scholar 

  • Gibbons, R. J., Doetsch, R. N.: Physiological study of an obligately anaerobic ureolytic bacterium. J. Bact. 77, 417–428 (1959).

    PubMed  Google Scholar 

  • Hahn, F. E., Wisseman, C. L., Jr., Hopps, H. E.: Mode of action of chloramphenicol. II. Inhibition of bacterial D-polypeptide formation by an L-stereoisomer of chloramphenicol. J. Bact. 67, 674–679 (1954).

    PubMed  Google Scholar 

  • Harada, T., Spencer, B.: Repression and induction of arylsulphatase synthesis in Aerobacter aerogenes. Biochem. J. 93, 373 (1964).

    PubMed  Google Scholar 

  • Harold, F. M., Baarda, J. R.: Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conductors. J. Bact. 96, 2025–2034 (1966).

    Google Scholar 

  • —, Pavlasova, E.: Energy coupling in the transport of β-galactosides by Escherichia coli: Effect of proton conductors. J. Bact. 98, 198–204 (1969).

    PubMed  Google Scholar 

  • Henderson, A.: The urease activity of Acinetobacter lwoffii and A. anitratus. J. gen. Microbiol. 46, 399–406 (1967).

    Google Scholar 

  • Hiort, U., Kating, H.: Arginase-und Ureasesynthese bei Micrococcus denitrificans Beij. unter aeroben und anaeroben Kulturbedingungen. Z. Naturforsch. 24b, 862–865 (1969).

    Google Scholar 

  • Horiuchi, T., Horiuchi, S., Mizuno, D.: A possible negative feedback phenomenon controlling formation of alkaline phosphomonoesterase in Escherichia coli. Nature (Lond.) 183, 1529–1530 (1959).

    Google Scholar 

  • Hyman, R. W., Davidson, N.: Kinetics of the in vitro inhibition of transcription by actinomycin. J. molec. Biol. 50, 421–438 (1970).

    PubMed  Google Scholar 

  • Jeffries, C. D.: Intracellular microbial urease. Nature (Lond.) 202, 930 (1964a).

    Google Scholar 

  • —: Urease activity of intact and disrupted bacteria. Arch. Path. 77, 544–547 (1964b).

    PubMed  Google Scholar 

  • Kaltwasser, H.: Harnsäureabbau und Biosynthese der Enzyme Uricase, Glyoxylatcarboligase und Urease bei Hydrogenomonas H 16. I. Bildung von Glyoxylatcaboligase und D-Glycerate-3-Dehydrogenase. Arch. Mikrobiol. 64, 71–84 (1968).

    PubMed  Google Scholar 

  • —, Krämer, J.: Verwertung von Cytosin und Uracil durch Hydrogenomonas facilis und Hydrogenomonas H 16. Arch. Mikrobiol. 60, 172–181 (1968).

    PubMed  Google Scholar 

  • —, Schlegel, H. G.: NADH-dependent coupled enzyme assay for urease and other ammonia-producing systems. Analyt. Biochem. 16, 132–138 1966).

    PubMed  Google Scholar 

  • Kleczkowski, K., Hiort, U., Kating, H.: Untersuchungen zum Stoffwechsel des Harnstoffs bei Mikroorganismen. Arch. Mikrobiol. 54, 177–183 (1966).

    Google Scholar 

  • Klein, H. P.: Synthesis of enzymes in resting cells. Ann. N.Y. Acad. Sci. 102, 637–654 (1963).

    PubMed  Google Scholar 

  • König, C., Kaltwasser, H., Schlegel, H. G.: Die Bildung von Urease nach Verbrauch der äußeren N-Quelle bei Hydrogenomonas H 16. Arch. Mikrobiol. 53, 231–241 (1966).

    PubMed  Google Scholar 

  • —, Schlegel, H. G.: Oscillationen der Ureaseaktivität von Hydrogenomonas H 16 in statischer Kultur. Biochim. biophys. Acta (Amst.) 139, 182–185 (1967).

    Google Scholar 

  • Kovac, L., Kuzela, S.: Effect of uncoupling agents and azide on the synthesis of β-galactosidase in aerobically and anaerobically grown Escherichia coli. Biochim. biophys. Acta (Amst.) 127, 355–365 (1966).

    Google Scholar 

  • Krämer, J., Kaltwasser, H.: Verwertung von Pyrimidinderivaten durch Hydrogenomonas facilis. Arch. Mikrobiol. 68, 227–235 (1969).

    PubMed  Google Scholar 

  • ——, Schlegel, H. G.: Die Bedeutung der Ureaserepression für die taxonomische Klassifizierung von Bakterien. Zbl. Bakt., II. Abt. 121, 414–423 (1967).

    Google Scholar 

  • Krakow, G., Barkulis, S.: Conversion of glyoxylate to hydroxypyruvate by extracts of Escherichia coli. Biochim. biophys. Acta (Amst.) 21, 593–594 (1956).

    Article  Google Scholar 

  • Kuenzler, E. J.: Glucose-6-phosphate utilization by marine algae. J. Phycol. 1, 156–164 (1956).

    Google Scholar 

  • Kutzner, H. J., Nitsch, B.: Über einige physiologische Eigenschaften von Streptomyceten: Harnstoffspaltung, Eigelbreaktion, Abbau organischer Säuren. Zbl. Bakt., I. Abt. Orig. 212, 470–477 (1970).

    Google Scholar 

  • Ljubimov, V. I. The degradation of urea as an intracellular reaction [Russian]. Mikrobiologiya 24, 160–163 (1955).

    Google Scholar 

  • Magnana-Plaza, I., Ruiz-Herrera, J.: Mechanisms of regulation of urease biosynthesis in Proteus rettgeri. J. Bact. 93, 1295–1301 (1967).

    Google Scholar 

  • Mecke, D., Holzer, H.: Repression und Inaktivierung von Glutaminsynthetase in Escherichia coli durch NH4 +. Biochim. biophys. Acta (Amst.) 122, 341–351 (1966).

    Google Scholar 

  • Mejbaum, W.: Über die Bestimmung kleiner Pentosemengen insbesondere in Derivaten der Adenylsäure. Hoppe-Seylers Z. physiol. Chem. 158, 117 (1939).

    Google Scholar 

  • Middelhoven, W. J.: The derepression of arginase and of ornithine transaminase in nitrogen starved baker's yeast. Biochim. biophys. Acta (Amst.) 156, 440–443 (1968).

    Google Scholar 

  • Mitchell, N. B., Levine, M.: Nitrogen availability as an aid in the differentiation of bacteria in the coli-aerogenes group. J. Bact. 36, 587–598 (1938).

    Google Scholar 

  • Moore, R. B., Kauffmann, N. J.: Simultaneous determination of citrulline and urea using diacetylmonoxime. Analyt. Biochem. 33, 263–272 (1970).

    PubMed  Google Scholar 

  • Pareijko, R. A., Wilson, P. W.: Regulation of nitrogenase synthesis by Klebsiella pneumoniae. Canad. J. Microbiol. 16, 681–685 (1970).

    Google Scholar 

  • Pinter, M., Bende, I., Domokos, L.: Die intrazelluläre Urease-Aktivität der Moraxella lwoffii (Bacterium anitratum)-Gruppe. Zbl. Bakt., I. Abt. Orig. 203, 387–390 (1967).

    Google Scholar 

  • Schmidt, K., Liaaen-Jensen, S., Schlegel, H. G.: Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch. Mikrobiol. 46, 117–126 (1963).

    PubMed  Google Scholar 

  • Seneca, H., Peer, P., Nally, R.: Microbial urease. Nature (Lond.) 193, 1106 (1963).

    Google Scholar 

  • Stewart, D. J.: The urease activity of fluorescent pseudomonads. J. gen. Microbiol. 41, 169–174 (1965).

    Google Scholar 

  • Stuart, C. A., Stratum, E. V., Rustigan, R.: Further studies on urease production by Proteus and related organisms. J. Bact. 49, 437 (1945).

    Google Scholar 

  • Torriani, A.: Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim. biophys.Acta (Amst.) 38, 460–479 (1960).

    Article  Google Scholar 

  • Weber, M. J., DeMoss, J. A.: The inhibition by chloramphenicol of nascent protein formation in E. coli. Proc. nat. Acad. Sci. (Wash.) 55, 1224–1230 (1966).

    Google Scholar 

  • Wisseman, C. L., Jr., Smadel, J. E., Hahn, F. E., Hopps, H. E.: Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J. Bact. 67, 662–673 (1954).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaltwasser, H., Krämer, J. & Conger, W.R. Control of urease formation in certain aerobic bacteria. Archiv. Mikrobiol. 81, 178–196 (1972). https://doi.org/10.1007/BF00412327

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00412327

Keywords

Navigation