Skip to main content
Log in

Der Biosyntheseweg der RNS-Ribose in Hydrogenomonas eutropha Stamm H 16 und Pseudomonas facilis

The biosynthetic pathway of RNA ribose in Hydrogenomonas eutropha Strain H 16 and Pseudomonas facilis

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

The enzymes involved in the degradation of fructose and gluconate via the Entner-Doudoroff-pathway as well as those involved in the oxidative pentose phosphate pathway have been determined in crude extracts of Hydrogenomonas eutropha strain H 16 and of Pseudomonas facilis after either autotrophic growth or heterotrophic growth on fructose or gluconate as substrates. In H. eutropha fructose induces all enzymes of the Entner-Doudoroff-pathway, gluconate induces only glucokinase, 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase. In contrast, in P. facilis both substrates induce the entire set of enzymes. The absence of 6-phosphogluconate dehydrogenase in H. eutropha and the presence of a NAD-linked 6-phosphogluconate dehydrogenase in P. facilis have been confirmed. Otherwise, the enzyme activities in fully induced fructose grown cells of both species are similar.

Incorporation experiments were performed using both bacterial species and employing U-14C-, 1-14C-, and 6-14C-fructose as well as 1-14C- and 6-14C-gluconate as substrates. Ribose was isolated from RNA and fermented by Lactobacillus plantarum with the production of acetic and lactic acids. By stepwise degradation of the acids and by quantitative measurement and scintillation counting of the carbon dioxide formed the specific radioactivity of each carbon atom has been determined.

The results demonstrate that in strain H 16 ribose is formed exclusively via the non-oxidative reactions of the pentose phosphate pathway. Carbon atoms 1 to 3 of gluconate do not significantly contribute to gluconeogenesis.

With P. facilis an almost identical labelling pattern was observed, indicating that the oxidative reactions of the pentose phosphate pathway via 6-phosphogluconate dehydrogenase are quantitatively of minor importance for ribose synthesis than the transaldolase-transketolase reactions.

Zusammenfassung

Die am Fructose- und Gluconatabbau über den Entner-Doudoroff-Weg beteiligten Enzyme sowie die Enzyme des oxydativen Pentosephosphat-Weges wurden in Rohextrakten von Hydrogenomonas eutropha Stamm H 16 und Pseudomonas facilis, sowohl nach autotrophem Wachstum als auch nach heterotrophem Wachstum auf Fructose oder Gluconat, bestimmt. Fructose induziert in H. eutropha alle Enzyme des Entner-Doudoroff-Weges, Gluconat nur die Gluconokinase, die 6-Phosphogluconat-Dehydratase und die 2-Keto-3-desoxy-6-phosphogluconat-Aldolase. Dagegen induzieren in P. facilis beide Substrate den gesamten Enzymsatz. Das Fehlen der 6-Phosphogluconat-Dehydrogenase in H. eutropha und das Vorhandensein einer NAD-abhängigen 6-Phosphogluconat-Dehydrogenase in P. facilis wurden bestätigt. Die Enzymaktivitäten in voll induzierten, auf Fructose gewachsenen Zellen beider Arten sind ähnlich.

Mit beiden Stämmen wurden Einbauexperimente mit U-14C-, 1-14C- und 6-14C-Fructose sowie 1-14C- und 6-14C-Gluconat als Substrate durchgeführt. Die Ribose wurde aus der RNS isoliert und durch Lactobacillus plantarum fermentativ in Essigund Milchsäure gespalten. Die spezifische Radioaktivität der einzelnen C-Atome wurde durch schrittweisen Abbau der Säuren, quantitative Bestimmung des dabei entstehenden 14CO2 und Messung der darin enthaltenen absoluten Radioaktivität ermittelt.

Die Ergebnisse zeigen, daß die Ribose in Stamm H 16 ausschließlich über die nicht-oxydativen Reaktionen des Pentosephosphat-Weges gebildet wird. Die C-Atome 1,2 und 3 des Gluconats tragen nicht signifikant zur Gluconeogenese bei.

Das Markierungsmuster der Ribose aus P. facilis ist mit dem von Stamm H 16 nahezu identisch. Die oxydativen Reaktionen des Pentosephosphat-Weges über die 6-Phosphogluconat-Dehydrogenase sind von quantitativ geringerer Bedeutung als die Transaldolase-Transketolase-Reaktionen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

Adenosin-5′-triphosphat

DAP:

Dihydroxyacetonphosphat

E-4-P:

Erythrose-4-phosphat

ED:

Entner-Doudoroff

EDTA:

Äthylen-diamin-tetraessigsäure

FDP(ase):

Fructose-1,6-diphosphat(ase)

F-6-P:

Fructose-6-phosphat

G-6-P(-DH):

Glucose-6-phosphat(-Dehydrogenase)

GAP:

Glycerinaldehyd-3-phosphat

GDH:

Glycerin-1-phosphat-Dehydrogenase

GK:

Gluconokinase

HK:

Hexokinase

KDPG:

2-Keto-3-desoxy-6-phosphogluconat

LDH:

Lactat-Dehydrogenase

NAD(H2):

Nicotin-amid-adenin-dinucleotid (reduziert)

NADP(H2):

Nicotinamid-adenin-dinucleotidphosphat (reduziert)

PGI:

Phosphoglucose-Isomerase

PP:

Pentosephosphat

6-PG(-DH):

6-Phosphogluconat(-Dehydrogenase)

6-PG-DHT:

6-Phosphogluconat-Dehydratase

R-5-P:

Ribose-5-phosphat

Ru-5-P:

Ribulose-5-phosphat

Su-7-P:

Seduheptulose-7-phosphat

TA:

Transaldolase

TEA:

Triäthanolaminhydrochlorid

TIM:

Triosephosphat-Isomerase

TK:

Transketolase

TPP:

Thiaminpyrophosphat

Tris:

Tris-(hydroxymethyl)-aminomethan

Xu-5-P:

Xylulose-5-phosphat

Literatur

  • Ashwell, G.: Colorimetric analysis of sugars. In: S. P. Colowick and N. O. Kaplan. Methods in enzymology, Vol. 3, pp. 87–90. New York: Academic Press 1957.

    Google Scholar 

  • Bagatell, F. K., Wight, E. M., Sable, H. Z.: Biosynthesis of ribose and deoxyribose in Escherichia coli. Biochim. biophys. Acta (Amst.) 28, 216–217 (1958).

    Google Scholar 

  • ———: Biosynthesis of ribose and deoxyribose in Escherichia coli. J. biol. Chem. 234, 1369–1374 (1959).

    PubMed  Google Scholar 

  • Beisenherz, G., Boltze, H. J., Bücher, T., Czok, R., Garbade, K. H., Meyer-Arendt, E., Pfleiderer, G.: Diphosphofructose-Aldolase, Phosphoglycerinaldehyd-Dehydrogenase, Milchsäuredehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskel in einem Arbeitsgang. Z. Naturforsch. 8 b, 555–577 (1953).

    Google Scholar 

  • Bernstein, I. A.: Fermentation of ribose-C14 by Lactobacillus pentosus. J. biol. Chem. 205, 309–316 (1953).

    PubMed  Google Scholar 

  • —: Biosynthesis of ribose in Escherichia coli grown on C14-labeled glucose. J. biol. Chem. 221, 873–878 (1953).

    Google Scholar 

  • — Wood, H. G.: Determination of isotopic carbon patterns in carbohydrate by bacterial fermentation. In: S. P. Colowick and N. O. Kaplan: Methods in enzymology, Vol. 4, pp. 561–584. New York: Academic Press 1957.

    Google Scholar 

  • Blackkolb, F., Schlegel, H. G.: Katabolische Repression und Enzymhemmung durch molekularen Wasserstoff bei Hydrogenomonas. Arch. Mikrobiol. 62, 129–143 (1968).

    PubMed  Google Scholar 

  • Boehringer-Informationen (1961, 1964).

  • Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analyt. Biochem. 1, 279–285 (1960).

    Google Scholar 

  • Brenneman, F. N., Vishniac, W., Volk, W. A.: Ribose synthesis in Alcaligenes faecalis. J. biol. Chem. 235, 3357–3362 (1960).

    Google Scholar 

  • Caprioli, R., rittenberg, D.: Pentose synthesis in Escherichia coli. Biochemistry 8, 3375–3384 (1969).

    PubMed  Google Scholar 

  • Cohen, S. S.: Gluconokinase. In: S. P. Colowick and N. O. Kaplan: Methods in enzymology, Vol. 1, pp. 350–354. New York: Academic Press 1955.

    Google Scholar 

  • Decker, K., Thauer, R. K., Jungermann, K.: Die Kohlenhydratsynthese in Clostridium kluyveri. I. Isotopenversuche zur Biosynthese der Ribose. Biochem. Z. 345, 461–471 (1966).

    Google Scholar 

  • Doudoroff, M.: The oxidative assimilation of sugars and related substances by Pseudomonas saccharophila. Enzymologia 9, 59–72 (1940).

    Google Scholar 

  • Entner, N., Doudoroff, M.: Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. biol. Chem. 196, 853–862 (1952).

    PubMed  Google Scholar 

  • Fossitt, D. D., Bernstein, I. A.: Biosynthesis of ribose and deoxyribose in Pseudomonas saccharophila. J. Bact. 86, 1326–1331 (1963).

    PubMed  Google Scholar 

  • Fraenkel, D. G.: Selection of Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase. J. Bact. 95, 1267–1271 (1968).

    PubMed  Google Scholar 

  • Frings, W., Schlegel, H. G.: Zur Synthese der C4-Dicarbonsäuren aus Pyruvat durch Hydrogenomonas eutropha Stamm H 16. Arch. Mikrobiol. 79, 204–219 (1971).

    PubMed  Google Scholar 

  • Gest, H., Lampen, J. O.: Fermentation of 1-14C-xylose by Lactobacillus pentosus. J. biol. Chem. 194, 555–562 (1952).

    PubMed  Google Scholar 

  • Gottschalk, G., Barker, H. A.: Synthesis of glutamate and citrate by Clostridium kluyveri. A new type of citrate synthase. Biochemistry 5, 1125–1133 (1966).

    PubMed  Google Scholar 

  • —, Eberhardt, U., Schlegel, H. G.: Verwertung von Fructose durch Hydrogenomonas H 16 (I). Arch. Mikrobiol. 48, 95–108 (1964).

    PubMed  Google Scholar 

  • Hiatt, H. H., Lareau, J.: Studies of ribose metabolism. J. biol. Chem. 233, 1023–1024 (1958).

    PubMed  Google Scholar 

  • Katz, J., Rognstad, D.: The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, the contribution of the pentose cycle, and ribose phosphate synthesis. Biochemistry 6, 2227–2247 (1967).

    PubMed  Google Scholar 

  • Kuehn, G. D., McFadden, B. A.: Enzymes of the Entner-Doudoroff path in fructose-grown Hydrogenomonas eutropha. Canad. J. Microbiol. 14, 1259–1260 (1968).

    Google Scholar 

  • Ling, K. H., Byrne, W. L., Lardy, H.: Phosphohexokinase. In: S. P. Colowick and N. O. Kaplan: Methods in enzymology, Vol. 1, pp. 306–310. New York: Academic Press 1955.

    Google Scholar 

  • McFadden, B. A., Tu, C. L.: Regulation of autotrophic and heterotrophic carbon dioxide fixation in Hydrogenomonas facilis. J. Bact. 93, 886–893 (1967).

    PubMed  Google Scholar 

  • Partridge, S. M.: Anilin hydrogen phthalate as a spraying reagent for chromatography of sugars. Nature (Lond.) 164, 443 (1949).

    Google Scholar 

  • Racker, E., Schroeder, E. A. R.: The reductive pentose phosphate cycle. II. Specific C1-phosphatases for fructose-1,6-diphosphate and seduheptulose-1,7-diphosphate. Arch. Biochem. 74, 326–344 (1958).

    PubMed  Google Scholar 

  • Ramsey, H. H.: Autotrophic and heterotrophic metabolism in Hydrogenomonas facilis. Antonie v. Leeuwenhoek 34, 71–80 (1968).

    Google Scholar 

  • Sable, H. Z.: Biosynthesis of ribose and deoxyribose. Advanc. Enzymol. 28, 391–460 (1966).

    Google Scholar 

  • — Cassisi, E. E.: Biosynthesis and biosynthetic pathways of pentoses in Escherichia coli. J. Bact. 84, 1169–1172 (1962).

    PubMed  Google Scholar 

  • Sakami, W.: Handbook of isotope tracer methods. Cleveland: Western Reserve University 1955.

    Google Scholar 

  • Schatz, A., Bovell, C.: Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. J. Bact. 63, 87–98 (1952).

    PubMed  Google Scholar 

  • Schlegel, H. G., Kaltwasser, H., Gottschalk, G.: Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 39, 209–222 (1961).

    PubMed  Google Scholar 

  • Szynkiewicz, Z. M., Sable, H. Z., Pflueger, E. M.: Biosynthesis of pentoses in Escherichia coli. J. Bact. 81, 837–844 (1961).

    PubMed  Google Scholar 

  • Utter, M. F.: Carbohydrate metabolism. Ann. Rev. Biochem. 27, 245–284 (1958).

    Article  PubMed  Google Scholar 

  • Wilde, E.: Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Arch. Mikrobiol. 43, 109–137 (1962).

    PubMed  Google Scholar 

  • Wood, H. G., Katz, J., Landau, B. R.: Estimation of pathways of carbohydrate metabolism. Biochem. Z. 338, 809–847 (1963).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowien, B., Schlegel, H.G. Der Biosyntheseweg der RNS-Ribose in Hydrogenomonas eutropha Stamm H 16 und Pseudomonas facilis . Archiv. Mikrobiol. 85, 95–112 (1972). https://doi.org/10.1007/BF00409291

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409291

Navigation