Skip to main content
Log in

Relaxation of bulk and interfacial energies

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we obtain an integral representation for the relaxation inBV(Ω; ℝp) of the functional

$$u \mapsto \int\limits_\Omega {f(x.\nabla u(x))dx + \int\limits_{\sum _{(u)} } {\varphi (x,[u](x),v(x))dH_{N - 1} (x)} }$$

with respect to theBV weak * convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G. Rank-one property for derivatives of functions with bounded variation.Proc. Roy. Soc. Edin. A 123 (1993), 239–274.

    Google Scholar 

  2. Almgrem, F., J. Taylor &L. Wang. Curvature driven flows: a variational approach. To appear.

  3. Ambrosio, L. On the lower semicontinuity of quasiconvex integrals inSBV (Ω; ℝk).Nonlinear Anal. 23 (1994), 405–425.

    Google Scholar 

  4. Ambrosio, L. &A. Braides, Functionals defined on partitions of sets of finite perimeter, I: Integral representation and I-convergence.J. Math. Pure Appl. 69 (1990), 285–305.

    Google Scholar 

  5. Ambrosio, L. &A. Braides. Functionals defined on partitions of sets of finite perimeter, II: Semicontinuity, relaxation and homogenization.J. Math. Pures Appl. 69 (1990), 307–333.

    Google Scholar 

  6. Ambrosio, L. &G. Dal Maso, On the relaxation inBV(Ω; ℝm) of quasiconvex integrals.J. Funct. Anal. 109 (1992), 76–97.

    Google Scholar 

  7. Ambrosio, L., S. Mortola &V. M. Tortorelli. Functionals with linear growth defined on vector valuedBV functions.J. Math. Pures Appl. 70 (1991), 269–323.

    Google Scholar 

  8. Ambrosio, L. &E. Virga. A boundary value problem for nematic liquid crystals with variable degree of orientation.Arch. Rational Mech. Anal. 114 (1991), 335–347.

    Google Scholar 

  9. Baldo, S. Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids.Ann. Inst. H. Poincaré, Anal. Non Linéaire 7 (1990), 37–65.

    Google Scholar 

  10. Barroso, A. C. &I. Fonseca. Anisotropic singular perturbations.Proc. Roy. Soc. Edin. A 124 (1994), 527–571.

    Google Scholar 

  11. Blake, A. &A. Zisserman.Visual Reconstruction. MIT Press, Boston, 1987.

    Google Scholar 

  12. Bouchitté, G., A. Braides &G. Buttazzo. Relaxation results for some free discontinuity problems.J. Reine Angew. Math. 458 (1995), 1–18.

    Google Scholar 

  13. Bouchitté, G. &G. Buttazzo. New lower semicontinuity results for non convex functionals defined on measures.Nonlin. Anal. 15 (1990), 679–692.

    Google Scholar 

  14. Bouchitté, G. &G. Buttazzo. Integral representation of nonconvex functionals defined on measures.Ann. Inst. H. Poincaré, Anal. Non Linéaire 9 (1992), 101–117.

    Google Scholar 

  15. Bouchitté, G. &G. Buttazzo. Relaxation for a class of nonconvex functionals defined on measures.Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 345–361.

    Google Scholar 

  16. Bouchitté, G. &G. Dal Maso. Integral representation and relaxation of convex local functionalsBV (Ω).Ann. Scuola Norm. Sup. Pisa 20 (1993), 483–533.

    Google Scholar 

  17. Braides, A. &A. Coscia. The interaction between bulk energy and surface energy in multiple integrals.Proc. Royal Soc. Edin. 124A (1994), 737–756.

    Google Scholar 

  18. Braides, A. &V. De Cicco. New lower semicontinuity results for functionals defined onBV. Preprint SISSA (Trieste)66 (1993).

  19. Braides, A. &V. Chiadò Piat. A derivation formula for integral functionals defined onBV (Ω). Preprint SISSA (Trieste)144 (1993).

  20. Buttazzo, G. Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Res. Notes Math.207. Longman, Harlow, 1989.

  21. Buttazzo, G. Energies onBV and variational models in fracture mechanics. Preprint Dip. Mat. Univ. Pisa (1994).

  22. Celada, P. &G. Dal Maso, Further remarks on the lower semicontinuity of polyconvex integrals.Ann. Inst. H. Poincaré, Anal. Non Linéaire 11 (1994), 661–691.

    Google Scholar 

  23. Dacorogna, B. Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  24. Dal Maso, G. An Introduction to Γ-Convergence. Birkhäuser, Boston, 1993.

    Google Scholar 

  25. De Giorgi, E. &L. Ambrosio. Un nuovo tipo di funzionale del calcolo delle variazioni.Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988), 199–210.

    Google Scholar 

  26. De Giorgi, E., M. Carriero &A. Leaci. Existence theorem for a minimum problem with free discontinuity set.Arch. Rational Mech. Anal. 108 (1989), 195–218.

    Google Scholar 

  27. De Giorgi, E. &G. Letta. Une notion générale de convergence faible pour des fonctions croissantes d'ensemble.Ann. Sc. Norm. Sup. Pisa Cl. Sci. 4 (1977), 61–99.

    Google Scholar 

  28. Evans, L. C. &R. F. Gariepy,Measure Theory and Fine Properties of Functions. CRC Press, 1992.

  29. Federer, H. Geometric Measure Theory. Springer, 1969.

  30. Fonseca, I. &.G. Francfort. Relaxation inBV versus quasiconvexification inW 1,p: a model for the interaction between damage and fracture.Calc. Var. 3 (1995), 407–446.

    Google Scholar 

  31. Fonseca, I. &M. Katsoulakis. Minimizing movements and mean curvature evolution equations associated to a phase transitions problem.J. Diff. and Int. Eq. 7 (1995), 1619–1656.

    Google Scholar 

  32. Fonseca, I. &D. Kinderlehrer, Lower semicontinuity and relaxation of surface energy functionals. To appear.

  33. Fonseca, I., D. Kinderlehrer &P. Pedregal. Relaxation inBV ×L of functionals depending on strain and composition.Boundary Value Problems for Partial Differential Equations and Applications, dedicated to Enrico Magenes.J. L. Lions &C. Baiocchi, eds., Masson, Paris, 1993.

    Google Scholar 

  34. Fonseca, I. &S. Müller. Quasiconvex integrands and lower semicontinuity inL 1.SIAM J. Math. Anal. 23 (1992), 1081–1098.

    Google Scholar 

  35. Fonseca, I. &S. Müller. Relaxation of quasiconvex functionals inBV (Ω; ℝp) for integrandsf(x,u,∇u).Arch. Rational Mech. Anal. 123 (1993), 1–49.

    Google Scholar 

  36. Fonseca, I. &P. Rybka. Relaxation of multiple integrals in the spaceBV (Ω; ℝp).Proc. Royal Soc. Edin. 121A (1992), 321–348.

    Google Scholar 

  37. Giusti, E. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston, 1984.

    Google Scholar 

  38. Morrey, C. B. Quasiconvexity and the semicontinuity of multiple integrals.Pacific J. Math. 2 (1952), 25–53.

    Google Scholar 

  39. Morrey, C. B. Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966.

    Google Scholar 

  40. Mumford, D., &J. Shah, Boundary detection by minimizing functionals.Proc. IIIE Conf. on Computer Vision and Pattern Recognition, San Francisco, 1985.

  41. Mumford, D. &J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems.Comm. Pure Appl. Math. 42 (1989), 577–685.

    Google Scholar 

  42. Nitzberg, M., D. Mumford &T. Shiota,Filtering, Segmentation, and Depth, Lecture Notes in Computer Science, Springer-Verlag, N.Y., 1993.

    Google Scholar 

  43. Vol'pert, A. I. Spaces BV and quasi-linear equations.Math. USSR Sb. 17 (1969), 225–267.

    Google Scholar 

  44. Ziemer, W. P. Weakly Differentiable Functions, Springer-Verlag, Berlin, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated byJ. Ball

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barroso, A.C., Bouchitté, G., Buttazzo, G. et al. Relaxation of bulk and interfacial energies. Arch. Rational Mech. Anal. 135, 107–173 (1996). https://doi.org/10.1007/BF02198453

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02198453

Keywords

Navigation