Skip to main content
Log in

Global Hopf bifurcation of two-parameter flows

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The behavior of center-indices, as introduced by J. Mallet-Paret & J. Yorke, is analyzed for two-parameter flows. The integer sum of center-indices along a one-dimensional curve in parameter space is called the H-index. A nonzero H-index implies global Hopf bifurcation. The index H is not a homotopy invariant. This fact is due to the occurrence of stationary points with an algebraically double eigenvalue zero, which we call B-points. To each B-point we assign an integer B-index, such that the H-index relates to the B-indices by a formula such as occurs in the calculus of residues.

This formula is easily applied to study global bifurcation of periodic solutions in diffusively coupled two-cells of chemical oscillators and to treat spatially heterogeneous time-periodic oscillations in porous catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Alexander: Spontaneous oscillations in two 2-component cells coupled by diffusion. Preprint.

  2. J. C. Alexander & J. A. Yorke: Global bifurcations of periodic orbits, Amer. J. Math. 100 (1978), 263–292.

    Google Scholar 

  3. K. T. Alligood, J. Mallet-Paret, & J. A. Yorke: Families of periodic orbits: local continuability does not imply global continuability, J. Diff. Geom. 16 (1981), 483–492.

    Google Scholar 

  4. K. T. Alligood, J. Mallet-Paret, & J. A. Yorke: An index for the continuation of relatively isolated sets of periodic orbits, in [41], 1–21.

  5. K. T. Alligood & J. A. Yorke: Families of periodic orbits: virtual periods and global continuability, J. Diff. Eq. 55 (1984), 59–71.

    Google Scholar 

  6. W. Alt: Some periodicity criteria for functional differential equations, Man. Math. 23 (1978), 295–318.

    Google Scholar 

  7. R. Aris: The mathematical theory of diffusion and reaction in permeable catalysts I, II, Clarendon Press, Oxford 1975.

    Google Scholar 

  8. V. I. Arnold: Lectures on bifurcations and versal systems, Russ. Math. Surveys 27, 5 (1972), 54–123.

    Google Scholar 

  9. V. I. Arnold: Geometrical methods in the theory of ordinary differential equations (engl. transl.), Springer, Berlin, Heidelberg, New York 1983.

    Google Scholar 

  10. M. Ashkenazi & H. G. Othmer: Spatial patterns in coupled biochemical oscillators, J. Math. Biol. 5 (1978), 305–350.

    Google Scholar 

  11. R. I. Bogdanov: Bifurcations of a limit cycle of a family of vector fields in the plane (russ.), Trudy Sem. I. G. Petrovskogo 2 (1976), 23–36.

    Google Scholar 

  12. A versal deformation of a singular point of a vector field in the plane in the case of zero eigenvalues (russ.), ibid. Trudy Sem. I. G. Petrovskogo 2 (1976) 37–65.

  13. R. I. Bogdanov: Versal deformations of a singular point on the plane in the case of zero eigenvalues, Funct. Anal. Appl. 9 (1975), 144–145.

    Google Scholar 

  14. S.-N. Chow & J. K. Hale: Methods of bifurcation theory, Springer, Berlin, Heidelberg, New York, 1982.

    Google Scholar 

  15. S.-N. Chow, J. Mallet-Paret & J. A. Yorke: A periodic orbit index which is a bifurcation invariant, in [41], 109–131.

  16. M. G. Crandall & P. H. Rabinowitz: The Hopf bifurcation theorem in infinite dimensions, Arch. Rational Mech. Anal. 67 (1977), 53–72.

    Google Scholar 

  17. B. Fiedler: Global Hopf bifurcation in porous catalysts, in Equadiff 82, H. W. Knobloch & K. Schmitt eds., Lect. Notes Math. 1017, 177–183, Springer, Berlin, Heidelberg, New York, Tokyo 1983.

  18. B. Fiedler: An index for global Hopf bifurcation in parabolic systems, J. Reine u. Angew. Math., 359 (1985), 1–36.

    Google Scholar 

  19. B. Fiedler: Global Hopf bifurcation for Volterra integral equations, to appear in SIAM J. Math. Anal.,

  20. M. Golubitsky & V. Guillemin: Stable mappings and their singularities, Springer, Berlin, Heidelberg, New York 1973.

    Google Scholar 

  21. J. Guckenheimer: Multiple bifurcation problems of codimension two, SIAM J. Math. Anal. 15 (1984), 1–49.

    Google Scholar 

  22. J. Guckenheimer & P. J. Holmes: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, Berlin, Heidelberg, New York, Tokyo 1983.

    Google Scholar 

  23. J. K. Hale: Generic bifurcations with applications, in Nonlinear analysis and mechanics: Heriot-Watt Symposium I, R. J. Knops ed., 59–157, Pitman, London, San Francisco, Melbourne 1977.

    Google Scholar 

  24. J. Harrison & J. A. Yorke: Flows on S 3and ℝ3 without periodic orbits, in [41], 401–407.

  25. M. W. Hirsch: Differential Topology, Springer, Berlin, Heidelberg, New York 1976.

    Google Scholar 

  26. L. N. Howard: Nonlinear oscillations, in Nonlinear oscillations in biology, F. Hoppensteadt ed., AMS Lect. Appl. Math. 17 (1979), 1–69.

  27. J. Ize: Obstruction theory and multiparameter Hopf bifurcation. Preprint.

  28. K. F. Jensen & W. H. Ray: The bifurcation behavior of tubular reactors, Chem. Eng. Sci. 37 (1982), 199–222.

    Google Scholar 

  29. J. P. Keener: Infinite period bifurcation in simple chemical reactors, in Modelling of chemical reaction systems, K. H. Ebert, P. Deuflhard, W. Jäger eds., Springer, Berlin, Heidelberg, New York 1981.

    Google Scholar 

  30. J. P. Keener: Infinite period bifurcation and global bifurcation branches, SIAM J. Appl. Math. 41 (1981), 127–144.

    Google Scholar 

  31. R. Lefever & I. Prigogine: Symmetry-breaking instabilities in dissipative systems II, J. Chem. Phys. 48 (1968), 1695–1700.

    Google Scholar 

  32. J. Mallet-Paret & J. A. Yorke: Snakes: oriented families of periodic orbits, their sources, sinks and continuation, J. Diff. Eq. 43 (1982), 419–450.

    Google Scholar 

  33. M. Medveď: Generic properties of parametrized vector fields I, II, Czech. Math. J. 25 (1975), 376–388 and 26 (1976), 71–83.

    Google Scholar 

  34. M. Medveď: On two-parametric systems of matrices and diffeomorphisms, Czech. Math. J. 33 (1983), 176–192.

    Google Scholar 

  35. I. Schreiber & M. Marek: Strange attractors in coupled reaction-diffusion cells, Physica 5D (1982), 258–272.

    Google Scholar 

  36. S. Smale: An infinite dimensional version of Sard's theorem. Amer. J. Math. 87 (1965), 861–866.

    Google Scholar 

  37. S. Smale: A mathematical model of two cells via Turing's equation, in Some mathematical questions in biology V, J. D. Cowen ed., AMS Lect. Math. in the Life Sciences 6 (1974), 15–26.

  38. J. Sotomayor: Generic bifurcations of dynamical systems, in: Salvador Symposium on Dynamical Systems 1971, M. M. Peixoto ed., 561–582, Academic Press, New York, San Francisco, London 1973.

    Google Scholar 

  39. F. Takens: Singularities of vector fields, Publ. IHES 43 (1974), 47–100.

  40. A. J. Tromba: Fredholm vector fields and a transversality theorem, J. Funct. Anal. 23 (1976), 362–368.

    Google Scholar 

  41. J. A. Yorke & K. T. Alligood: Cascades of period-doubling bifurcations: a prerequisite for horseshoes, Bull. American Math. Soc. 9 (1983), 319–322.

    Google Scholar 

  42. Geometric Dynamics, Proceedings 1981, J. Palis Jr. ed., Lect. Notes Math. 1007, Springer, Berlin, Heidelberg, New York, Tokyo 1983.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Golubitsky

Dedicated to the memory of Charlie Conley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiedler, B. Global Hopf bifurcation of two-parameter flows. Arch. Rational Mech. Anal. 94, 59–81 (1986). https://doi.org/10.1007/BF00278243

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00278243

Keywords

Navigation