Skip to main content
Log in

Lipids of adrenal chromaffin granules: Fatty acid composition of phospholipids, in particular lysolecithin

  • Published:
Naunyn-Schmiedebergs Archiv für Pharmakologie und experimentelle Pathologie Aims and scope Submit manuscript

Zusammenfassung

  1. 1.

    Die Fettsäurezusammensetzung der Gesamtphospholipide und von Lecithin, Lysolecithin und Phosphatidyläthanolamin aus chromaffinen Granula des Rindernebennierenmarks wurde untersucht.

  2. 2.

    Die Gesamtphospholipide haben einen relativ hohen Gehalt an Plasmalogenen. Phosphatidyläthanolamin enthält viel Plasmalogen, während Lecithin weniger enthält. 60% der gesamten Fettsäuren in diesen beiden Phospholipiden sind ungesättigt.

  3. 3.

    Lysolecithin aus chromaffinen Granula zeigt charakteristischerweise einen hohen Gehalt (77%) an gesättigten Fettsäuren und einen sehr niedrigen (4%) an mehrfach ungesättigten Fettsäuren. Stearinsäure ist die quantitativ wichtigste Fettsäure.

  4. 4.

    Lysolecithin, das aus Lecithin der chromaffinen Granula durch Inkubation mit Schlangengift-Phospholipase A2 erhalten wurde, hatte eine ähnliche Fettsäurezusammensetzung wie endogenes Lysolecithin.

  5. 5.

    Daraus wird gefolgert, daß Lysolecithin in den chromaffinen Granula durch die Wirkung einer Phospholipase A2 gebildet wird und als das 1-acyl Isomer vorliegt. Subcelluläre Vorgänge, die an der Bildung von Lysolecithin im Nebennierenmark beteiligt sein könnten, werden diskutiert.

Summary

  1. 1.

    The fatty acid composition of total phospholipids and of Jecithin, lysolecithin and phosphatidylethanolamine isolated from bovine chromaffin granules was determined.

  2. 2.

    Total phospholipids are relatively rich in plasmalogens. Phosphatidylethanolamine is also rich in plasmalogen whereas lecithin contains less. Unsaturated fatty acids comprise about 60% of the total fatty acids in both of the latter phospholipids.

  3. 3.

    The lysolecithin of chromaffin granules is characterised by a high content (77%) of saturated fatty acids and a very low content (4%) of polyunsaturated fatty acids. The major fatty acid is stearic acid.

  4. 4.

    The lysolecithin formed by the action of snake venom phospholipase A2 on lecithin isolated from chromaffin granules has a fatty acid composition very similar to that of the endogenous lysolecithin.

  5. 5.

    It is concluded that the lysolecithin in chromaffin granules is formed by the action of a phospholipase A2 on lecithin and is the 1-acyl isomer. Possible sub-cellular events involved in the formation of the lysolecithin are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Blaschko, H., H. Firemark, A. D. Smith, and H. Winkler: Lipids of the adrenal medulla: lysolecithin, a characteristic constituent of chromaffin granules. Biochem. J. 104, 545–549 (1967a).

    Google Scholar 

  • ——, and H. Winkler: Biochemical and morphological studies on catecholamine storage in human phaeochromocytoma. Clin. Sci. 34, 543–465 (1968).

    Google Scholar 

  • ——, and L. L. M. van Deenen: Acid phospholipase A in lysosomes of the bovine adrenal medulla. Biochem. J. 103, 30C-32C (1967b).

    Google Scholar 

  • Bligh, E. G., and W. J. Dyer: A rapid method of total lipid extraction and purification. Canad. J. Biochem. 37, 910–917 (1959).

    Google Scholar 

  • Bosch, H., van den, and L. L. M. van Deenen: Chemical structure and biochemical significance of lysolecithins from rat liver. Biochim. biophys. Acta 106, 326–337 (1965).

    Google Scholar 

  • Bowyer, D. E., W. M. F. Leat, A. N. Howard, and G. A. Gresham: The determination of the fatty acid composition of serum lipids separated by thin-layer chromatography; and a comparison with column chromatography. Biochim. biophys. Acta 70, 423–431 (1963).

    Google Scholar 

  • Deenen, L. L. M. van: Phospholipids and biomembranes. Progr. Chem. Fats. 8, 1–127 (1965).

    Google Scholar 

  • ——, and G. H. de Haas: Phosphoglycerides and phospholipases. A. Rev. Biochem. 35, 157–194 (1966).

    Google Scholar 

  • de Duve, C., and R. Wattiaux: Functions of lysosomes. A. Rev. Physiol. 28, 461–492 (1966).

    Google Scholar 

  • Dodge, J. T., and G. B. Phillips: Composition of phospholipids and of phospholipid fatty acids and aldehydes in human red cells. J. Lipid Res. 8, 667–675 (1967).

    Google Scholar 

  • Fleischer, S., and G. Rouser: Lipids of subcellular particles. J. Am. Oil Chem. Soc. 42, 588–607 (1965).

    Google Scholar 

  • Folch, J., M. Lees, and G. H. Sloane-Stanley: A simple method for the isolation and purification of total lipides from animal tissues. J. biol. Chem. 266, 497–509 (1957).

    Google Scholar 

  • Golde, L. M. G. van, and L. L. M. van Deenen: The effect of dietary fat on the molecular species of lecithin from ratliver. Biochim. biophys. Acta 125, 496–509 (1966).

    Google Scholar 

  • Hajdu, S., H. Weiss, and E. Titus: The isolation of a cardiac active principle from mammalian tissue. J. Pharmac. exp. Ther. 120, 99–113 (1957).

    Google Scholar 

  • Hanahan, D. J.: Lipid chemistry. New York: J. Wiley Inc. (1960).

    Google Scholar 

  • Holtzman, E.: Golgi apparatus, GERL, and lysosomes in secretion and protein uptake by adrenal medulla cells. J. Cell Biol. 35, 58A (1967).

    Google Scholar 

  • Hooghwinkel, G. J. M., and H. P. G. A. van Nierkerk: Quantitative aspects of the tricomplex staining procedure. Proc. K. med. Akad. Wet. Ser. B 63, 258–271 (1963).

    Google Scholar 

  • Jones, D., D. E. Bowyer,, G. A. Gresham, and A. N. Howard: An improved spray for detecting lipids on thin-layer chromatograms. J. Chromat. 23, 172–174 (1966).

    Google Scholar 

  • Kai, M., T. Joshita, and M. Saga: Fatty acid composition of lecithin from beef brain and egg yolk. J. Biochem., Tokyo, 54, 403–411 (1963).

    Google Scholar 

  • Kishimoto, Y., and N. S. Radin: A reaction tube for methanolysis; instability of hydrogen chloride in methanol. J. Lipid. Res. 6, 435–436 (1965).

    Google Scholar 

  • Moore, J. H., and D. L. Williams: Some observations on the specificity of phospholipase A. Biochim. biophys. Acta, 84, 41–54 (1964).

    Google Scholar 

  • Neudoerffer, T. S.: Identification of artefact formed during methylation of plasmalogen aldehydes. Chem. Phys. Lipids 1, 341–348 (1967).

    Google Scholar 

  • Norton, W. T.: Potentiometric iodometric determination of plasmalogen. Biochim. biophys. Acta 38, 340–342 (1960).

    Google Scholar 

  • Novikoff, A. B., and E. Essner: Pathological changes in cytoplasmic organelles. Fedn. Proc. Fedn. Am. Socs. exp. Biol. 21, 1130–1142 (1962).

    Google Scholar 

  • Nutter, L. J., and O. S. Privett: Phospholipase A properties of several snake venom preparations. Lipids 1, 258–262 (1966).

    Google Scholar 

  • Pascaud, M.: Les phospholipides de la cellule hépatique — Interprétation fonctionnelle de leur renouvellement. 2. Renouvellement des acides gras des phosphoglycerides. Biochim. biophys. Acta 84, 528–537 (1964).

    Google Scholar 

  • Phillips, G. B., and J. T. Dodge: Composition of phospholipids and of phospholipid fatty acids of human plasma. J. Lipid Res. 8, 676–681 (1967).

    Google Scholar 

  • Robertis, E. D. P. de, and D. D. Sabatini: Submicroscopic analysis of the secretory process in the adrenal medulla. Fed. Proc. 19, 4m 70–73 (1960).

    Google Scholar 

  • Skipski, V. P., R. F. Peterson, and M. Barclay: Quantitative analysis of phospholipids by thin-layer chromatography. Biochem. J. 90, 374–378 (1964).

    Google Scholar 

  • Skipski, V. P. S., A. F. Smolowe, R. C. Sullivan, and M. Barclay: Separation of lipid classes by thin-layer chromatography. Biochim. biophys. Acta 106, 386–396 (1965).

    Google Scholar 

  • Smith, A. D., and H. Winkler: The localization of lysosomal enzymes in chromaffin tissue. J. Physiol. (Lond.) 183, 179–188 (1966).

    Google Scholar 

  • —— —— A simple method for the isolation of adrenal chromaffin granules on a large scale. Biochem. J. 103, 480–482 (1967).

    Google Scholar 

  • —— —— Lysosomal phospholipases A1 and A2 of bovine adrenal medulla. Biochem. J. 108, 867–874 (1968).

    Google Scholar 

  • Smith, R. E., and M. G. Farquhar: Lysosome function in the regulation of the secretory process in cells of the anterior pituitary glands. J. Cell Biol. 31, 319–347 (1966).

    Google Scholar 

  • Sobel, H. J., and E. Avrin: Localization of acid phosphatase activity in rat pancreatic acinar cells: a light and electron microscopic study. J. Histochem. Cytochem. 13, 301–303 (1965).

    Google Scholar 

  • Tattrie, N. H., and R. Cyr: Fatty acid compositions of naturally occurring lysolecithins and lecithins. Biochim. biophys. Acta 70, 693–696 (1963).

    Google Scholar 

  • Winkler, H.: Structure, metabolism and function of the chromaffin cell, 1–134. D. Phil. thesis: University of Oxford 1967.

  • ——: The positional specificity of lysosomal phospholipase A activities. Biochem. J. 105, 38C-40C (1967a).

    Google Scholar 

  • ——, u. E. Ziegler: Über Lipide, insbesondere Lysolecithin, in den chromaffinen Granula verschiedener Species. Arch. exp. Path. Pharmak. 256, 407–415 (1967b).

    Google Scholar 

  • —— —— —— Lysolecithin und Phospholipasen im chromaffinen Gewebe. Arch. exp. Path. Pharmak. 257, 77 (1967c).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, H., Smith, A.D. Lipids of adrenal chromaffin granules: Fatty acid composition of phospholipids, in particular lysolecithin. Naunyn-Schmiedebergs Arch. Pharmak. u. Exp. Path. 261, 379–388 (1968). https://doi.org/10.1007/BF00537182

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00537182

Schlüsselwörter

Key-words

Navigation