Skip to main content
Log in

Effects of methysticin on three different models of seizure like events studied in rat hippocampal and entorhinal cortex slices

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Methysticin is one of the constituents of Piper methysticum which possesses anticonvulsant and neuroprotective properties. Its effects on different in vitro seizure models were tested using extracellular recordings in rat temporal cortex slices containing the hippocampus and the entorhinal cortex. Elevating [K+]o0 induced seizure-like events with tonic and clonic electrographic phases in area CA1. Lowering [Ca2+]0 caused recurrent seizure like episodes with large negative field potential shifts. Lowering Mg2+ induced short recurrent discharges in area CA3 and CA1 while ictaform events lasting for many seconds were induced in the subiculum, entorhinal and temporal neocortex. In the hippocampus the activity stayed stable over a number of hours. In contrast, the ictaform events in the subiculum, entorhinal and temporal cortex changed their characteristics after one to two hours to late recurrent discharges. In a concentration-range from 10 to 100 μM methysticin reversibly blocked all these types of epileptiform activity. Decreases in [Ca2+]0 and associated slow field potentials evoked by repetitive stimulation of the stratum radiatum or the alveus remained almost unaffected by methysticin. A paired pulse stimulus paradigm used to test for effects of methysticin on synaptically evoked transient field potentials in normal medium revealed interference with mechanisms involved in frequency potentiation. While responses to alvear stimulation were largely unaffected, the responses to a paired pulse stimulus to stratum radiatum were depressed over the whole range of tested stimulus intervals. The findings suggest that methysticin has effects on different patterns of epileptiform activity possibly by interfering with processes responsible for frequency potentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backhauß C, Krieglstein J (1992) Extract of kava (Piper methysticum) and its methysticin constiuents protect brain tissue against ischemic damage in rodents. Eur J Pharmacol 215:265–269

    Google Scholar 

  • Cawte J (1988) Macabre effects of a cult of Kava. Med J Austr 148:545–546

    Google Scholar 

  • Cuzent M (1861) Composition chimique de la kavahine. Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences 52:205–206

    Google Scholar 

  • Dreier JP, Heinemann U (1990) Late low magnesium-induced epileptiform activity in rat entorhinal cortex slices becomes insensitive to the anticonvulsant valproic acid. Neurosci Lett 119: 68–70

    Google Scholar 

  • Dreier JP, Heinemann U (1991) Regional and time dependent variations of low Magnesium induced epileptiform activity in rat temporal cortex. Exp Brain Res 87:581–596

    Google Scholar 

  • Editorial (1988) Kava. The Lancet 30:258–259

    Google Scholar 

  • Efron DH, Holmstedt B, Kline NS (1979) Ethnopharmacoligic search for psychoactive drugs. Raven Press, New York, pp 105–181

    Google Scholar 

  • Franceschetti S, Hamon B, Heinemann U (1986) The action of valproate on spontaneous epileptiform activity in absence of synaptic transmission and on evoked changes in [Ca2+]o in the hippocampal slice. Brain Res 386:1–11

    Google Scholar 

  • Goubley M (1860) Recherches Chimiques sur la racine de kava. Journal de Pharmacie et de Chimie 37:19–23

    Google Scholar 

  • Haas HL, Jefferys JGR (1984) Low-calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. J Physiol (Long) 353:185–201

    Google Scholar 

  • Heinemann U, Jones RSG (1990) Neurophysiology, In: Dam M, Gram L (eds) Comprehensive epiletology, Raven Press, New York, pp 17–42

    Google Scholar 

  • Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27:237–243

    Google Scholar 

  • Heinemann U, Franceschetti S, Hamon B, Konnerth A, Yaari Y (1985) Effects of anticonvulsants on spontaneous epileptiform activity which devevops in the absence of chemical synaptic transmission in hippocampal slices. Brain Res 325:349–352

    Google Scholar 

  • Heinemann U, Konnerth A, Pumain R, Wadman WJ (1986) Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology, vol 44. Basic mechanism of the epilepsis: Molecular and cellular approaches. Raven Press, New York, pp 641–661

    Google Scholar 

  • Heinemann U, Arens J, Dreier JP, Stabel J, Zhang CL (1991) In vitro epileptiform activity: Role of excitatory amino acids. Epilepsy Res 10:18–23

    Google Scholar 

  • Herberg KW (1991) Fahrtüchtigkeit nach Einnahme von Kava-Spezial-Extrakt WS 1490:Doppleblinde placebokontrollierte Probandenstudie. Z Allgemeinmed 67:842–846

    Google Scholar 

  • Hood TW, Siegfried J, Haas HL (1983) Analysis of carbamazepine actions in hippocampal slices of the rat. Cell Mol Neurobiol 3:213–222

    Google Scholar 

  • Johnson D, Frauedorf A, Strecker K, Stein U (1991) Neurophysiologisches Wirkprofil und Verträglichkeit von Kava-Extrackt WS 1490. TW Neurologie Psychiatrie 5:349–354

    Google Scholar 

  • Keller F, Klohs MW (1963) A review of chemistry and pharmacology of the constituents of Piper methysticum. Llyoda 26:1–15

    Google Scholar 

  • Kinzler E, Krömer J, Lehmann E (1991) Wirksamkeit eines Kava-Spezial-Extraktes bei Patienten mit Angst-, Spannungs- und Erregungszuständen nicht-physchotischer Genese, Arzneim Forsch 41:584–588

    Google Scholar 

  • Konnerth A, Heinemann U, Yaari Y (1984) Slow transmission of neural activity in hippocampal area CA1 in absence of active chemical synapses. Nature 307:69–71

    Google Scholar 

  • Kretzschmar R, Meyer HJ, Teschendorf JH (1970) Strychnine antagonistic potency of pyrone compounds of the Kava root (Piper methysticum, Forst). Experientia 26:283–284

    Google Scholar 

  • Leschinger A, Stabel J, Igelmund P, Heinemann U (1993) Pharmacological and electrographic properties of epileptiform activity induced by elevated K+ and lowered Ca2+ and Mg2+ concentration in rat hippocampal slices. Exp Brain Res 96:230–240

    Google Scholar 

  • Lux HD, Neher E (1973) The equilibration time course of [K+]0 in cat cortex. Exp Brain Res 17:190–205

    Google Scholar 

  • Lux, HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology, vol 44. Basic mechanisms of the epilepsics: molecular and cellular approaches. Raven Press, New York, pp 619–639

    Google Scholar 

  • Mathews JD, Riley MD, Fejo L, Munoz E, Milns R, Gardner ID, Power JR, Ganygulpa E, Gununuwawuy BJ (1989) Effects of the heavy usage of Kava on physical health: Summary of a pilot survey in an aboriginal community. Med J Austr 148:548–555

    Google Scholar 

  • Meyer HJ (1964) Untersuchungen über den antikonvulsiven Wirkungstyp der Kawa-Pyrone Dihydromethysticin und Dihydrokawain mit Hilfe chemisch induzierter Krämpfe. Arch int Pharmacodyn 150:118–131

    Google Scholar 

  • Meyer HJ, Kretzschmar R (1969) Untersuchungen über Beziehungen zwischen Molekularstruktur und pharmakologischer Wirkung C6-arylsubstituierter 4-Mehyoxy-a-pyrone vom Typ der Kawa-Pyrone. Arzneim Forsch 19:617–623

    Google Scholar 

  • Mody I, Lambert JDC, Heinemann U (1987) Low extracellular magnesium induces eplileptiform activity and spreading depression in rat hippocampal slices. J Neurophysiol 57:869–888

    Google Scholar 

  • Münte TF, Heinze HJ, Matzke M, Steitz J (1993) Effects of oxazepam and an extract of Kava roots (Piper methysticum) on event-related potential in a word recognition task. Neuropsychobiology 27:46–53

    Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. 2nd edn. Academic Press, London

    Google Scholar 

  • Pfeiffer CC, Murphree HB, Goldstein L (1979) EFfects of kawa on normal subjects and patients. In: Efron et al (eds) Ethnopharmacologic search for psyschoactive drugs. Raven Press, New York, pp 155–161

    Google Scholar 

  • Pumain R, Menini C, Heinemann U, Silvat-Barrat C, Louvel J (1985) Chemical synaptic transmission is not necessary for epileptic activity to persist in the neocortex of the photosensitive baboon. Neurol 89:250–258

    Google Scholar 

  • Pumain R, Kurcewicz I, Louvel J (1987) Ionic changes induced by excitatory amino acids in the rat cerebral cortex. Can J Physiol Pharmacol 65:1067–1077

    Google Scholar 

  • Shulgin At (1973) The narcotic pepper - The chemistry and pharmacology of Piper methysticum and related species. Bull Narcotics 25:59–74

    Google Scholar 

  • Siesjö BK (1981) Cell damage in the brain: A speculative synthesis. J Cerebr Blood Flow Metab 1:155–185

    Google Scholar 

  • Singh YN (1992) Kava: an overview. J Ethnopharmacol 37:13–45

    Google Scholar 

  • Steinegger E, Hänsel R (1988) Lehrbuch der Pharmakognosie und Phytopharmazie, 4th edn. Springer, Berlin Heidelberg New York, p 663

    Google Scholar 

  • Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rate hippocampal slice. J Neurophysiol 59:259–276

    Google Scholar 

  • Walther H, Lambert JDC, Jones RSG, Heinemann U, Hamon B (1986) Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perusion with low magnesium medium. Neurosci Lett 69:156–161

    Google Scholar 

  • Warnecke G (1991) Psychosomatische Dysfunktion im weiblichen Klimakterium. Klinische Wirksamkeit und Verträglichkeit von Kava-Extrakt WS 1490. Fortschr Med 109:119–122

    Google Scholar 

  • Yaari Y, Konnerth A, Heinemann U (1983) Spontaneous epileptiform activity of CA1 hippocampal neurons in low extracellular calcium solutions. Exp Brain Res 51:153–156

    Google Scholar 

  • Yaari Y, Konnerth A, Heinemann U (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J Neurophysiol 56:424–438

    Google Scholar 

  • Zhang CL, Glovelli T, Heinemann U (1994) Effects of NMDA- and AMPA-receptor antagonists on different forms of epileptiform activity in rat temporal cortex slices. Epilepsia 35 [Suppl 5]: 68–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, D., Zhang, C.L., Chatterjee, S.S. et al. Effects of methysticin on three different models of seizure like events studied in rat hippocampal and entorhinal cortex slices. Naunyn-Schmiedeberg's Arch Pharmacol 351, 348–355 (1995). https://doi.org/10.1007/BF00169074

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00169074

Key words

Navigation