Skip to main content
Log in

On the asymptotic directions of thes-dimensional optimum gradient method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The optimums-gradient method for minimizing a positive definite quadratic functionf(x) onE n has long been known to converge fors ≧+1. For theses the author studies the directions from which the iteratesx k approach their limit, and extends tos>1 a theory proved byAkaike fors=1. It is shown thatf (x k ) can never converge to its minimum value faster than linearly, except in degenerate cases where it attains the minimum in one step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akaike, Hirotugu: On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method. Ann. Inst. Statist. Math. Tokyo11, 1–16 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arms, R. J.: On the asymptotic behavior of the method of steepest descent. Unpublished manuscript, 5 March 1957. Presented to Association for Computing Machinery, Houston, Texas, June 1957

  3. Bauer, F. L., andA. S. Householder: Moments and characteristic roots. Numer. Math.2, 42–53 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  4. Birman, M. Š.: Nekotorye ocenki dlja metoda naiskoreišego spuska. Uspehi Matem. Nauk (N.S.)5, 152–155 (1950)

    MATH  MathSciNet  Google Scholar 

  5. Daniel, J. W.: The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal.4, 10–26 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  6. Faddeev, D. K., andV. I. Faddeeva: Computational methods of linear algebra. Translated byRobert C. Williams. San Francisco: W. H. Freeman and Co. 1963.

    Google Scholar 

  7. Forsythe, G. E.: Solving linear algebraic equations can be interesting. Bull. Amer. Math. Soc.59, 299–329 (1953).

    Article  MathSciNet  Google Scholar 

  8. ——, andT. S. Motzkin: Asymptotic properties of the optimum gradient method (abstract). Bull. Amer. Math. Soc.57, 183 (1951).

    Google Scholar 

  9. Khabaza, I. M.: An iterative least-square method suitable for solving large sparse matrices. Comp. J.6, 202–206 (1963)

    MATH  MathSciNet  Google Scholar 

  10. Meinardus, G.: Über eine Verallgemeinerung einer Ungleichung vonL. V. Kantorowitsch. Numer. Math.5, 14–23 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  11. Ostrowski, A. M.: Solution of equations and systems of equations. Second edition. New York and London: Academic Press 1966.

    MATH  Google Scholar 

  12. Stiefel, E.: Über einige Methoden der Relaxationsrechnung. Z. Angew. Math. Physik3, 1–33 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  13. —— Kernel polynomials in linear algebra and their numerical applications. Pp.1–22 of Further contributions to the solution of simultaneous linear equations and the determination of eigenvalues. National Bureau of Standards AppliedMathematics Series 49. Washington, D. C.: U. S. Govt. Printing Office 1958.

    Google Scholar 

  14. Szegö, G.: Orthogonal polynomials. Revised edition. New York: American Mathematical Society 1959

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to ProfessorHeinrich Brinkmann for his seventieth birthday.

Research sponsored by the U.S. Office of Naval Research under project NR 044211.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsythe, G.E. On the asymptotic directions of thes-dimensional optimum gradient method. Numer. Math. 11, 57–76 (1968). https://doi.org/10.1007/BF02165472

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02165472

Keywords

Navigation