Skip to main content
Log in

On the approximate solution of nonlinear variational inequalities

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Nonlinear locally coercive variational inequalities are considered and especially the minimal surface over an obstacle. Optimal or nearly optimal error estimates are proved for a direct discretization of the problem with linear finite elements on a regular triangulation of the not necessarily convex domain. It is shown that the solution may be computed by a globally convergent relaxation method. Some numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blum, E., Oettli, W.: Mathematische Optimierung. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  2. Brezis, H., Kinderlehrer, D.: The smoothness of solutions to non-linear variational inequalities. Indiana Univ. Math. J.23, 831–844 (1974)

    Google Scholar 

  3. Brezis, H., Stampacchia, G.: Sur la regularite de la solution d'inequations elliptiques. Bull. Soc. Math. France96, 153–180 (1968)

    Google Scholar 

  4. Cryer, C.W.: The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control9, 385–392 (1971)

    Article  Google Scholar 

  5. Eckhardt, U.: On an Optimization problem related to minimal surfaces with obstacles. In: Optimization and optimal control (R. Bulirsch, W. Oettli, J. Stoer, eds.), Lecture notes, Vol. 477. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  6. Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput.28, 963–971 (1974)

    Google Scholar 

  7. Falk, R.S.: Approximation of an elliptic boundary value problem with unilateral constraints. Rev. Francaise Automat. Informat. Recherche OperationelleR 2, 5–12 (1975)

    Google Scholar 

  8. Gerhardt, C.: Regularity of solutions of nonlinear variational inequalities. Arch. Rational Mech. Anal.52, 389–393 (1973)

    Google Scholar 

  9. Gerhardt, C.: Hypersurfaces of prescribed mean curvature over obstacles. Math. Z.133, 169–185 (1973)

    Google Scholar 

  10. Johnson, C., Thomee, V.: Error estimates for a finite element approximation of a minimal surface. Math. Comput.29, 343–349 (1975)

    Google Scholar 

  11. Lewy, H., Stampacchia, G.: On existence and smoothness of solutions of some non-coercive variational inequalities. Arch. Rational Mech. Anal.41, 241–253 (1971)

    Google Scholar 

  12. Miranda, M.: Frontiere minimali con ostacoli. Ann. Univ. Ferrara, Sci. Mat. N.S.16, 29–37 (1971)

    Google Scholar 

  13. Mittelmann, H.D.: On the approximation of capillary surfaces in a gravitational field. Computing18, 141–148 (1977)

    Google Scholar 

  14. Mittelmann, H.D.: On pointwise estimates for a finite element solution of nonlinear boundary value problems. SIAM J. Numer. Anal.14, 773–778 (1977)

    Google Scholar 

  15. Mosco, U., Strang, G.: One-sided approximation and variational inequalities. Bull. Amer. Math. Soc.80, 308–312 (1974)

    Google Scholar 

  16. Natterer, F.: OptimaleL 2-Konvergenz finiter Elemente bei Variationsungleichungen. Bonn. Math. Schr.89, 1–12 (1976)

    Google Scholar 

  17. Nitsche, J.C.C.: Variational problems with inequalities as boundary conditions, or, How to fashion a cheap hat for Giacometti's brother. Arch. Rational Mech. Anal.35, 83–113 (1969)

    Google Scholar 

  18. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg36, 9–15 (1971)

    Google Scholar 

  19. Nitsche, J.:L -convergence of finite element approximation. Pres. at the Conf. Math. Asp. of the Fin. Elt. Meth., Rome, 1975

  20. Oettli, W.: Einzelschrittverfahren zur Lösung konvexer und dual-konvexer Minimierungsprobleme. Z. Angew. Math. Mech.54, 334–351 (1974)

    Google Scholar 

  21. Schechter, S.: Relaxation methods for convex problems. SIAM J. Numer. Anal.5, 601–612 (1968)

    Google Scholar 

  22. Schechter, S.: Minimization of a convex function by relaxation, Chap. 7. In: Integer and nonlinear programming (J. Abadie, ed.), pp. 177–189. Amsterdam: North Holland 1970

    Google Scholar 

  23. Schechter, S.: On the choice of relaxation parameters for nonlinear problems. In: Numerical solution of systems of nonlinear algebraic equations (G.D. Byrne, C.A. Hall, eds.). New York: Academic Press 1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittelmann, H.D. On the approximate solution of nonlinear variational inequalities. Numer. Math. 29, 451–462 (1978). https://doi.org/10.1007/BF01432881

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01432881

Subject Classifications

Navigation