Skip to main content
Log in

Numerical computation of branch points in ordinary differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

This paper deals with the computation of branch points in ordinary differential equations. A direct numerical method is presented which requires the solution of only one boundary value problem. The method handles the general case of branching from a nontrivial solution which is a-prioriunknown. A testfunction is proposed which may indicate branching if used in continuation methods. Several real-life problems demonstrate the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulirsch, R.: Private communication, München 1976

  2. Bulirsch, R.: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Report der Carl-Cranz-Gesellschaft, 1971

  3. Bulirsch, R., Stoer, J.: Numerical treatment of ordinary differential equations by extrapolation methods. Numer. Math.8, 1–13 (1966)

    Google Scholar 

  4. Bulirsch, R., Stoer, J., Deuflhard, P.: Numerical solution of nonlinear two-point boundary value problems I. To appear in Numer. Math., Handbook Series Approximation

  5. Deuflhard, P.: A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math.22, 289–315 (1974)

    Google Scholar 

  6. Deuflhard, P.: A relaxation strategy for the modified Newton method. In: Optimization and optimal control. (R. Bulirsch, W. Oettli, J. Stoer eds.). Proceedings of a Conference Held at Oberwolfach, 1974, Lecture Notes, Vol. 477. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  7. Hildebrandt, T.H., Graves, L.M.: Implicit functions and their differentials in general analysis. A.M.S. Transactions29, 127–153 (1927)

    Google Scholar 

  8. Hlaváček, V., Marek, M., Kubíček, M.: Modelling of chemical reactors — X. Multiple solutions of enthalpy and mass balances for a catalytic reaction within a porous catalyst particle. Chem. Engng. Sci.23, 1083–1097 (1968)

    Google Scholar 

  9. Hussels, H.G.: Schrittweitensteuerung bei der Integration gewöhnlicher Differentialgleichungen mit Extrapolationsverfahren. Universität zu Köln, Mathem. Institut, Diplomarbeit (1973)

  10. Keller, J.B., Antmann, S.: Bifurcation theory and nonlinear eigenvalue problems. New York-Amsterdam: Benjamin 1969

    Google Scholar 

  11. Koslowski, R.: Verzweigungsverhalten von Lösungen eines eindimensionalen Supraleitungsproblemes. Universität zu Köln, Mathem. Institut, Diplomarbeit 1975

  12. Kubíček, M., Hlaváček, V.: Solution of nonlinear boundary value problems — IX. Evaluation of branching points based on the differentiation with respect to boundary conditions. Chem. Engng. Sci.30, 1439–1440 (1975)

    Google Scholar 

  13. Langford, W.F.: Numerical solution of bifurcation problems for ordinary differential equations. Numer. Math.28, 171–190 (1977)

    Google Scholar 

  14. Odeh, F.: Existence and bifurcation theorems for the Ginzburg-Landau Equations. J. Math. Phys.8, 2351–2356 (1967)

    Google Scholar 

  15. Pimbley, G.H.: Eigenfunction branches of nonlinear operators, and their bifurcations. Lecture Notes, Vol. 104. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  16. Poincaré, H.: Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation. Acta mathematica7, 259–380 (1885)

    Google Scholar 

  17. Rentrop, P.: Numerische Lösung von singulären Randwertproblemen aus der Theorie der dünnen Schalen und der Supraleitung mit Hilfe der Mehrzielmethode. Universität zu Köln, Mathem. Institut, Diplomarbeit 1973

  18. Seydel, R.: Numerische Berechnung von Verzweigungen bei gewöhnlichen Differentialgleichungen. Bericht Nr. 7736, 1977, Technische Universität München, Institut für Mathematik

  19. Stakgold, I.: Branching of solutions of nonlinear equations. SIAM Review13, 289–332 (1971)

    Google Scholar 

  20. Stoer, J., Bulirsch, R.: Einführung in die Numerische Mathematik II. Heidelberger Taschenbuch, Band 114. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  21. Thom, R.: Stabilité Structurelle et Morphogénèse. New York: Benjamin 1972

    Google Scholar 

  22. Vainberg, M.M.: Variational methods for the study of nonlinear operators. San Francisco-London-Amsterdam: Holden-Day 1964

    Google Scholar 

  23. Weinitschke, H.J.: Die Stabilität elliptischer Zylinderschalen bei reiner Biegung. ZAMM50, 411–422 (1970)

    Google Scholar 

  24. Weinitschke, H.J.: On nonsymmetric bending instability of elliptic tubes. Unpublished manuscript, TU Berlin, to appear

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seydel, R. Numerical computation of branch points in ordinary differential equations. Numer. Math. 32, 51–68 (1979). https://doi.org/10.1007/BF01397649

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01397649

Subject Classifications

Navigation