Skip to main content
Log in

Effects of lorazepam on human contrast sensitivity

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The anxiolytic lorazepam was studied for its effects on contrast sensitivity to gratings flickering in counterphase in normal volunteers. The drug significantly reduced contrast sensitivity at low spatial frequencies in a dose-related manner. The results are discussed with reference to possible GABA-mediated processes in the retina and lateral geniculate nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armington JC, Adolph AR (1990) Local pattern electroretinograms and ganglion cell activity in the turtle eye. Int J Neurosci 50: 1–11

    PubMed  Google Scholar 

  • Beradi N, Morrone MC (1984) The role of gamma-aminobutyric acid mediated inhibition in the response properties of cat lateral geniculate nucleus neurones. J Physiol 357:505–523

    PubMed  Google Scholar 

  • Blakemore CB, Campbell FW (1969) On the existence of neurones in the human visual system selectively sensitive to the size and orientation of retinal images. J Physiol 203:237–260

    PubMed  Google Scholar 

  • Broughton R, Meier-Ewert KH, Ebe M (1966) Visual and somatosensory evoked potentials of photosensitive epileptic subjects during wakefulness, sleep and following i.v. diazepam (Valium) Electroencephalogr Clin Neurophysiol 21:622

    Google Scholar 

  • DeBruyn EJ, Bonds AB (1986) Contrast adaptation in cat visual cortex is not mediated by GABA. Brain Res 383:339–342

    Article  PubMed  Google Scholar 

  • Ebe M, Meier-Ewert KH, Broughton R (1969) Effects of intravenous diazepam (Valium) upon evoked potentials of photosensitive and normal subjects. Electroencephalogr Clin Neurophysiol 27:429–435

    Article  PubMed  Google Scholar 

  • Findlay JM (1978) Estimates on probability functions: a more virulent PEST. Percept Psychophys 23:181–185

    Google Scholar 

  • Georgeson MA (1985) The effect of spatial adaptation on perceived contrast. Spatial Vision 1:103–112

    PubMed  Google Scholar 

  • Georgeson MA, Harris MG (1984) Spatial sensitivity of contrast adaptation: models and data. Vision Res 24:729–741

    Article  PubMed  Google Scholar 

  • Howell ER, Hess RF (1978) The functional area for summation to threshold for sinusiodal gratings. Vision 18:369–374

    Article  Google Scholar 

  • Hudnell HK, Boyes WK (1991) The comparability of rat and human visual-evoked potentials. Neurosci Biobehav Rev 15:159–164

    Article  PubMed  Google Scholar 

  • Ikeda H (1985) Transmitter action at cat retinal ganglion cells. In: Osborne NN, Chader GJ (eds) Progress in retinal research, Vol 4. Pergamon, Oxford

    Google Scholar 

  • Kirby AW (1979) The effect of strychnine, bicuculline and picrotoxin on X and Y cells in the cat retina. J Gen Physiol 74:71–84

    Article  PubMed  Google Scholar 

  • Kirby AW, Enroth-Cugell C (1976) The involvement of gammaaminobutyric acid in the organisation of cat retinal ganglion cell receptive fields: a study with picrotoxin and bicuculline. J Gen Physiol 68:465–484

    Article  PubMed  Google Scholar 

  • Kulikowski JJ, Tolhurst DJ (1973) Psychophysical evidence for sustained and transient detectors in human vision. J Physiol 272:149–162

    Google Scholar 

  • MacNab MW, Foltz EL, Sweitzer J (1985) Evaluation of signal detection theory on the effects of psychotropic drugs on critical flicker-fusion frequency in normal subjects. Psychopharmacology 85:431–435

    Article  PubMed  Google Scholar 

  • Maffei L, Fiorentini A (1973) The visual cortex as spatial frequency analyser. Vision Res 13:1255–1267

    Article  PubMed  Google Scholar 

  • Marshall J, Voaden M (1975) Autoradiographic identification of the cells accumulating H-gamma-aminobutyric acid in mammalian retinae: a species comparison. Vision Res 15:459–461

    Article  PubMed  Google Scholar 

  • Montero VM, Zempel J (1986) The proportion and size of GABA-immunoreactive neurons in the magnocellular and parvocellular layers of the lateral geniculate nucleus of the rhesus monkey. Exp Brain Res 62:215–223

    Article  PubMed  Google Scholar 

  • Norton TT, Godwin DW (1992) Inhibitory GABAergic control of visual signals at the lateral geniculate nucleus. In: Mize RR, Mare RE, Sillito AM (eds) Progress in brain research, vol. 90. Elsevier, Amsterdam pp 193–217

    Google Scholar 

  • Ohzawa I, Sclar G, Freeman RD (1985) Contrast gain control in the cat's visual system. J Neurophysiol 54:651–667

    PubMed  Google Scholar 

  • Poire R, Tassinari CA, Regis H, Gastort H (1967) Effects of diazepam (Valium) on the responses evoked by light stimuli in man (lambda waves, occipital “driving” and average visual evoked potentials) Electroencephalogr Clin Neurophysiol 23:379–385

    Article  Google Scholar 

  • Robson JG (1966) Spatial and temporal contrast sensitivity functions of the human visual system. J Opt Soc Am 56:1141–1142

    Google Scholar 

  • Saito H (1981) The effects of strychnine and bicuculline on the responses of X-and Y-cells of the isolated eye-cup preparation of the cat. Brain Res 212:243–248

    Google Scholar 

  • Sillito AM (1977) Inhibitory mechanisms underlying the directional selectivity of simple, complex, and hypercomplex cells in the cat's visual cortex. J Physiol 271:699–720

    PubMed  Google Scholar 

  • Tallman JF, Gallaher DW (1985) The GABA-ergic system: a locus for benzodiazepine action. Annu Rev Neurosci 8:21–44

    Article  PubMed  Google Scholar 

  • Taylor MM, Creelman CD (1967) PEST: efficient estimates on probability functions. J Acoust Soc Am 41:782–787

    Article  Google Scholar 

  • Van Nes FL, Bouman MA (1967) Spatial modulation transfer in the human eye. J Opt Soc Am 57:401–406

    Google Scholar 

  • Vidyasagar TR, Mueller A, Lee BB (1985) Effects of bicuculline on the responses of cat striate cortical cells to moving sine-wave gratings. Neurosci Lett (Supplement) 22:297

    Google Scholar 

  • Vogel JR (1979) Objective measurement of human performance changes produced by anti-anxiety drugs. In: Fielding S, Lal H, (eds) Anxiolytics. Mount Kisco, New York: Futura pp 343–374

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, J.P., Phillipson, O.T. Effects of lorazepam on human contrast sensitivity. Psychopharmacology 117, 379–384 (1995). https://doi.org/10.1007/BF02246113

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02246113

Key words

Navigation